资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
爱立信基站设备由于其相对的稳定性和良好的人机接口,被广泛应用于我国的移动通 信系统中。特别在江苏,除了最初采用的摩托罗拉模拟设备及部分地区采用的阿尔卡特数 字设备外,其余均使用了爱立信基站设备,包括模拟基站 RBS883、数字基站 RBS200 及 RBS2000 等。本文将联系实际,向大家介绍一些本人在长期的爱立信基站维护中总结出来 的经验,供大家参考。 1 爱立信模拟基站系统 RBS883 障碍处理一例江苏南通易家桥站的模拟基站系统为 RBS883,原经安装调测后,基站能正常工作。运 行一段时间后,交换侧测试发现系统中 B 小区第十个载频没有发射功率,经到现场观察发 现其对应的 COMB 不能调谐。我们知道,江苏目前的爱立信模拟基站系统 RBS883 一般均使用自动调谐的形式,即 功率合成器采用自动调谐合成器。其调谐过程主要是由功率监测单元接受从功率合成器中 耦合出的-32dB 的射频信号和从方向耦合器中耦合出的-40dB 的射频信号,通过对这两个射 频信号进行比较处理后,功率监测单元启动并控制相应的自动调谐合成器上的电动步进马 达转动,从而实现自动调谐功能 。下面我们对 RBS883 的具体结构作一说明。 在 RBS883 系统中,自动调谐功能主要由以下结构共同协调完成:功率监测单元 (PMU-AT)、信道收发信机(TRM)、自动调谐合成器(COMB)、方向耦合器。其工作原理 如下:当某一信道收发信机的发信机打开后,其输出功率信号经射频线输入到功率合成器 中的环形隔离器并最后进入合成器腔体中,同时从环形隔离器中(功率合成器上的 Pi 口) 耦合出-32dB 的射频信号,经功率监测单元面板上的参考信号输入端口(COMB 端口,共有 八个,分别与位于无线机架 A 中的八个合成器腔体相连),输入到功率监测单元中;另外, 输入到合成器腔体中的射频信号最后进入方向耦合器并经天馈线系统发射,同时也从方向 耦合器的前向功率(PFWD)口耦合-40dB 的射频信号,经功率监测单元面板上的 Pout FWD 口输入到功率监测单元中。功率监测单元对以上两种射频信号进行比较处理,当两信号相 差 7-9dB 以上时,功率监测单元就会通过步进马达控制线(从功率监测单元面板上的 M01- M08 端口至功率合成器上的步进马达信号连接头)向相应的功率合成器送步进马达控制电 源信号,启动步进马达转动,并控制其转动量使其准确调谐到相应的频率上。 首先更换 COMB,问题依旧,证明 COMB 正常;将功率计接到 TRM 的 TX 口,用 LCTRL1 软件将 TRM 的功率打开,发现功率计有功率显示,证明信道盘 TRM 正常;一般说来,如果 功率监测单元或方向耦合器坏,会导致该小区所有载频出现问题,而不应是某一载频退服, 因此我们可断定功率监测单元及方向耦合器没有问题。于是我们将目光转移到连线上:与 相邻载频(第八个或第十二个载频)同时对换 COMB 端的 Pi 输出头与马达连接后发现,该 载频能正常工作,而相邻载频却不能工作,从而将障碍定位在 Pi 输出线和马达连接线上; 更换从功率合成器上 Pi 口至功率监测单元上 COMB 口间的连线后,载频正常工作,问题解 决。这些问题都因功率合成器上 Pi 口至功率监测单元上 COMB 口间的连线损坏,功率监测 单元无法接收从功率合成器中耦合出的-32dB 的射频信号,进而无法控制 COMB 调谐。 2 爱立信数字基站系统 RBS200 障碍处理一例 江苏南通的海北站(RBS200 系统)曾发生过某个载频不能工作的情况:交换侧测试反 应为该套载频接收正常但不能有效发射;到基站观察发现,该套载频在推服过程中,RRX、TRXC 及 SPU 一切正常,而 RTX 不能有效锁定,导致整套载频无法正常工作。 我们知 道,爱立信数字基站系统 RBS200 一般均采用自动调谐合成器的形式。自动调成器实质是一 个窄带合路器,其输入被机械地调谐到指定的 GSM 频点。在每一个合路器的输入端都有一 个步进马达,它受控于它所连接的 RTX。两个输入被合路成一路输出,若干个合成器的输 出可以被连接成一条链。在调谐期间,发射机将其合路器的输入设置到可以给出最大前向 功率的位置,而且还检验反射回的功率,如果反射功率超过最大允许值,那么发射机将其 自身禁用并发出一个错误代码。下面我们联系 RBS200 的具体结构作一说明。 RBS200 系统的自动调谐功能主要由以下结构共同协调完成:无线发射顶(RTX)、自 动调谐合成器(COMB)、发射机带通滤波器(TXBP)、监测耦合器单元(MCU)及发射机分 路器(TXD)。 其工作原理如下:语音信息经过编码、交织、加密等一系列处理过程后,由 TRXC 通 过 TX 总线传送到无线发射机(RTX),无线发射机对其进行调制和放大,并经自动调谐合 成器(COMB)调谐和发射机带通滤波器(TXBP)滤波后,最后传送到监测耦合器单元 (MCU)并经天馈线系统发射出去;与此同时,监测耦合器单元的一个输出被连接到发射机 分路器(TXD)单元的输入端,经发射机分路器分路后,由其输出端连接到相应的一个 RTX 的“PT”口,RTX 将该信号与其自身发射信号进行分析比较后,进而控制自动调谐合成器 使其准确调谐到相应的频点上。 我们检查并更换硬件设备 COMB、RTX 及 TXD,结果在检查 RTX 时,发现该 RTX 的 “PT”端口中的针头歪掉了,导致该 RTX 与从 TXD 过来的射频线不能有效接触,RTX 收不 到从 TXD 反馈加来的参考信号,无法将该信号与其自身发射信号进行分析比较,进而无法 控制自动调谐合成器使其准确调谐到相应的频点上,因此该载频不能正常工作。将该 RTX 的“PT”端口中的针头拨正后,该套载频工作正常。 3 爱立信数字基站系统 RBS2000 障碍处理两例 (1)因缺少环路终端而导致基站退服 启东土管局基站为 RBS2000 站,原为 5/5/5 配置,后因信令压缩的需要,经网络规划 人员现场测试分析后,决定将其改型为 4/4/4 配置,并经信令压缩成一条传输线。压缩传 输后基站能正常工作。后因某种原因基站迁址,由原少年宫迁至启安宾馆,在重新开通时, 基站的 A 小区能正常工作,而 B、C 小区却不能工作,从交换机侧反应为 CF 数据灌不进去。经到现场用 OMT 软件观察发现,TEI 值、PCM 等设置一切无误,而用 Monitor 菜单也 不能发现任何告警信息;对 B、C 小区重新灌入原 IDB 后,障碍依旧,断定 IDB 数据无误。 在 C 机架的 DXU 中灌入 A 小区的 IDB 数据并改变架顶的 PCM 连接方式,使原 C、B 机架分别 对应 A、B 小区,则 C 机架(对应 A 小区)能正常工作,而 B 机架(对应 B 小区)却不能工 作;对 B 机架进行同样的操作后,情况与 C 一致,由此判断 B、C 机架设备无障碍。在判断 基站软、硬件一切正常的情况下,我们将目光转移到传输上。该站现为 4/4/4 配置,一条 传输线,从 DF 架连到 A 机架的 C3 口,并从 A 机架的 C7 口出来连到 B 机架的 C3 口,然后 再从 B 机架的 C7 口连到 C 机架的 C3 口。在检查连线及 IDB 中传输设置无误后,对传输通道进行环路测试并用万用表检查通路,没有发现任何问题。最后在 C 架的 C7 口加上一环路 终端,重新推站,基站恢复正常。 在基站工作正常的情况下,我们曾做过如下试验:将整个基站断电一段时间后再供电、 起站。共断过三次电,其中有两次在不加环路终端的情况下基站能正常工作,而另一次却 必须加上一环路终端基站才能工作。由此可见,因掉电而退服的基站,这种障碍现象并不 是必然的,而是具有一定的偶然性,即可能会出现这种障碍。 在我们日常操作维护中,对于只有一条传输线的 RBS2000 基站(其它站型的基站尚未 出现如此现象),当出现故障时,我们首先应该按照正常的步骤进行操作维护,包括用 OMT 观察告警信息、复位、拔插硬件板、检查软件设置及硬件故障等。在一切努力均告失 败的情况下,试着在 C 架架顶的 C7 端口加上一个环路终端,可能会帮助我们解决问题。 (2)因硬件原因引起基站告警 南通北码头基站为 RBS2000 站型,经工程局安装并调测后,基站能正常工作。但经过 一段时间的话务统计分析发现,该基站的 A、B 小区有较高的拥塞和掉话。通过 BSC 观察发 现,该站的 A、B 小区均有分集接收告警,同时 A 小区还有驻波比方面的告警。到基站用 OMT 观察,发现有分集接收丢失告警及 VSWR/POWER 检测丢失告警。 由于告警均与天馈线系统有关,我们先用驻波比测试仪分别对 A、B 小区的四根天馈 线进行了测试,结果发现测量值均在标准范围内,证明天馈线本身没有问题。 我们知道, 分集接受是解决信号衰落、提高信号接收强度的重要措施之一。小区通过两根接收天线接 受信号,可以产生 3dB 左右的增益,同时通过对两路信号的对比来判断接受系统是否正常。 如果 TRU 检测两路信号的强度差别很大,基站就会产生分集接收丢失告警。分集接收丢失 告警可能是 TRU、CDU、至 TRU 的射频连线或天馈线故障引起的。由于在本例中,我们注意 到 A、B 小区均有分集接收告警且拥塞和掉话均较高,于是怀疑 A、B 小区的天馈线相互错 位。后经高空作业人员对天馈线逐一检查,发现 A、B 小区的接受天线相互错位。因此 A、B 小区的两根接收天线接受方向不一致,方向不对的天线就接收不到该小区手机发出的 信号或接受信号很弱,从而使小区产生分集接收丢失告警且伴随着较高的拥塞和掉话。经 更改后,分集接收丢失告警消失,且拥塞和掉话降到了指标范围内。 对于 VSWR/POWER 检测丢失告警,我们也从原理上对其进行了分析处理。我们知道, 在 RBS2000 中,每个 TRU 都通过 Pfwd 和 Prefl 两根射频线分别与 CDU 的 Pf 与 Pr 相连,从 而检测 CDU 的前向功率和反向功率。如果反向功率过大,则说明天馈线驻波比太大或 CDU 有问题,这时 TRU 会自动关闭发射机产生 ANT VSWR 告警。同时 TRU 还对 Pfwd 和 Prefl 这 两根射频线进行环路测试,如环路不通,则产生一个 VSWR/POWER 告警。在本例中,由于出 现了 VSWR/POWER 告警,于是我们对其环路进行了检查。在 RBS2000 中,Pfwd 和 Prefl 这 两根射频线的接口处在 FU 上,其一端分别连到 CDU 前面板的 Pf 和 Pr 口,另一端则通过背 板连线连到 TRU 的后背板,并与 TRU 通过射频头相连,从而形成 Pfwd 和 Prefl 的整个环路。 我们对 CU、FU 上的接头进行认真检查,确定一切正常后,对 TRU 的后备板进行了检查,结 果发现后备板的射频头接口处凹了进去,导致 TRU 与后备板接触不好所致。经更改后, VSWR/POWER 检测丢失告警消失。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号