资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
F 1 1 9 发 动 机全称 F119PW-100,是为 F-22A 研制的双转子小涵道比加力 涡扇发动机 ,采用可上下偏转的二维矢量喷管,上下偏转角度为 20 度,推力和矢量由数字电子系统控制。 F119 主要参数:长 4.826 米,最大直径 1.13 米,重 1360 千克,最大推力 156 千牛,推重比11.7。 F119 发动机剖面图1 1 引引 言言 1982 年,美国空军提出拟用于 90 年代中后期的下一代 “先进战术战斗机 (ATF)”计划,与当时 的 F-1 5 等第三代战斗机相比, ATF 除要求有好的机动性外,还要突出有良好的敏捷性,高的隐身性, 超声速巡航与短距起降能力等。相应地对用于ATF 的发动机则要求推重比达到 10.0 一级,中间推力 要高,要采用矢量喷管等。当时有由洛克希德、波音和通用动力三公司联合提出的YF-22 方案与由 诺斯罗普、麦道两公司联合提出的YF-23 方案参与投标竞争。发动机方面则有美国普惠公司与GE 公 司为主,分别提出推重比为 10.0 一级、推力为 133.6 kN 的 PW5000(XF119)、GE37(XF120)发动机参 与竞争。 XF119 发动机零组件的生产始于 1985 年 9 月,第 1 台发动机 FX601 于 1986 年 10 月进行首次台 架试车。为了飞机进行飞行评估,两公司又分别发展了用于飞行试验的发动机YF119、YF120。经过 几年的开发研制, 1990 年 6 月、9 月 YF-23(装 YF119,YF-120)、YF-22(装 YF119、YFl20)相继首飞 进行对比飞行验证评估, 1991 年 4 月 23 日美国空军宣布选中装普惠公司 YF119 的 YF-22 作为 ATF的机型。1991 年 8 月 YF-22 进入“工程制造和发展 (EMD)”阶段。从此,飞机被命名为 F-22,发动 机被命名为 F119。在 ATF 飞机研制过程中,飞机重量与阻力均增加较多,为此,要求发动机的推力相 应提高近 1 7,即最大推力 (加力推力)要求为 156 kN,中间推力 (不开加力时最大状态下的推力 ) 为 105 kN,F119 发动机采取了将 XF119 的风扇直径稍作增加以提高 15的风扇空气流量,来满足推 力增大的要求为此发动机的涵道比由0.25 增至 0.30。按美国军用标准 MIL-SID-879(1968),F119 的第 1 种生产型发动机被命名为 F119-PW-100, XF119、YF119 在进入 EMD 阶段前总共完成了 3000 余小时的整机试车,到 1998 年 6 月共进行了 8 000 余小时整机试车。当转入 EMD 阶段时(1991 年 8 月 3 日),普惠公司获得研制 9 台 F119 试验发 动机与 39 台飞行试验发动机的 13.75 亿美元的 EMD 合同。按当时空军需要 2000 套以上的动力装置 (包括备件)来计算,普惠公司将获得 120 亿美元的收入。 1999 年 12 月 17 日首台 EMD 阶段的 F119 发动机进行首次试车, 1997 年 9 月 7 日装 F119-Pw-100 的 F-22 战斗机进行了首飞,开始了长达数年 的飞行试验计划。 2 2 发发动动机机综综述述 F119 发动机由 3 级风扇、6 级高压压气机、带气动喷嘴、浮壁式火焰筒的环形燃烧室、单级高压 涡轮与高压涡轮转向相反的单级低压涡轮、加力燃烧室与二维矢量喷管等组成。整台发动机分为:风扇、 核心机、低压涡轮、加力燃烧窒、尾喷管和附件传动机匣等6 个单元体,另外还有附件, FADEC 及 发动机监测系统, 与 F119 相竞争的 YF120 发动机为变循环发动机,在 2 级风扇后有一可调节的外涵出气环,在高 压压气机中,第一级工作叶片做得较长成为风扇,称之为核心机传动的风扇,其后有流向外涵的出气环, 在工作中始终是打开的,因此称主外涵出气环。在低工况时,两个外涵道均打开,使涵道比加大以获得 低的耗油率;在大工况时, 2 级风扇后的可调节放气环关闭,发动机成为小涵道比涡轮风扇发动机, 以增加单位推力。风扇到核心机间的压力匹配是通过装在加力燃烧室前的可变面积涵道引射器(VABI)将 外涵气流引向加力燃烧室来达到。 VABI 除对加力燃烧室隔热屏进行冷却外,还将外涵多余的气流引射 到尾喷管喉道前的排气气流中,以加大推力。 YF120 的风扇、压气机均比 F119 少 1 级,且高低压涡轮间无导向叶片,因此YF120 比 F119 少 5 排叶片。表 4 列出了 GE 公司的 YF120 与普惠公司的 YF119 结构上的主要差别。 F119 总体结构设计中,与普惠公司以往的发动机相比,有两个突出的变化,其一是高压转子支承 方式改用了 GE 公司惯用的形式,其二是高压涡轮采用了单级。 普惠公司在 20 世纪 60 年代后期开始研制的民用发动机 (JT9D、PW2037 和 PW4000)及军用发动机 (F100)中,高压转子均采用 1-1-0 支承方式,即高压压气机前为滚珠轴承,后支点设在高压涡轮前, 即高压涡轮是悬臂支承的,该轴承的负荷是通过燃烧室机匣传出的。图5 示出的 F100-PW-100 发动 机的支承简图是其代表。这种设计不仅使发动机承力框架数多,而且高压涡轮由于要装轴承使轴径小、 且涡轮盘是悬臂支承的,给转子动力学设计带来困难, GE 公司的发动机 (军用的有 F101,F110、F404,民用的有 CFM56)中,高压转子则采用了 1-0-1 支承方式,即转子的后支点设在高压涡轮后,且采用了中介轴承,即该轴承的外环固定于高压转子上, 内环固定于低压转子上。这种布局不仅可减少承力框架,而且高压涡轮轴轴径可做得很大,增加了转子 刚性,它的缺点是中介轴承的润滑与封严较为复杂些。普惠在研制F119 时,对高压转子的支承方案一改以往的做法,采用了 GE 公司在 F110,F404 中采用 1-0-1 且后支点用中介轴承的设计。图 6 示 出了 F119 发动机简图,从中可以看出高低压转子的支承方式,同时还能看出各部什的主要设计特点。 普惠公司在该公司最新的民用发动机PW8000 中也采用了 1-0-1 高压转子支承方式,这一设计变 化,值得注意。 高压涡轮的设计中,普惠公司在 20 世纪 60 年代后期开始研制的发动机,例如它的大型、民用发 动机 JT9D、PW2037 和 PW4000 以及军用发动机 F100 均采用了双级设计。这种设计,使每级涡轮的负 荷小,涡轮效率要大些,但带来零件多,重量大的缺点。GE 公司则在同时期研制的发动机 (军用: F101、FllO 和 F404,民用:CFM56)中,均采用了单级高压涡轮,虽然涡轮效率稍低,但收到了使发动 机的结构简单,零件教少,重量轻等好处。在F119 设计中,普惠公司也一改以往的做法,采用了单 级高压涡轮的设计 (见图 6)这一改变也是为了提高推重比。 3 3 各各部部件件主主要要设设计计特特点点 3.1 风扇(3 级) 第 l 级风扇叶片采州宽弦、空心设计,与用于波音777 的 Pw4084 发动机采用的空心叶片结构相 同,即叶片由叶盆、叶背两块型板经扩散连接法连接成一整叶片,在连接前,先将两板接合面处纵向地铣出几条槽道形成空腔,参见图 7。这种空心叶片的空心度较罗 罗公司采用的带蜂窝芯的夹层结构 小。用钛合金制的 3 级风扇转子均采用了整体叶盘结构 (在 YF-22 进行验证飞行时所用的发动机 YF119 中,仅 2,3 级风扇采用了整体叶盘 )。F119 采用了线性摩擦焊的加工方法加工整体叶盘, 罗罗公司近期也采用这种加工方法。 线性摩擦焊(Linear Friction Welding,LFW)是一种固态连接技术,类似于扩散连接 (Diffusion Bonding)。扩散连接是将两个需连接的零件的连接面紧紧靠住,在高温、高压下,两零件配合表面间 形成了材料原子的相互转移,最终使两者紧密连接成一体。在这种连接中,由于相连接处的材料并未熔 化因而不会出现一般焊接中易发生的脱焊现象。从结构上讲,连接处看不出“焊缝”来,且其强 度与弹性均优于本体材料。线性摩擦焊与扩散连接不同处在于:在扩散连接中,连接的工件是在炉中加 温使其达到高温的;而在线性摩擦焊中,工件的高温是通过两配合面间的相互高频振荡产生的。 整体叶盘线性摩擦焊的加工过程及采用这种加工工艺带来的好处,可参阅“一种整体叶盘的加 工方法线性摩擦焊”。 在 F119 发动机中,为保证风扇机匣刚性均匀,保持较均匀的叶尖间隙,风扇机匣做成整环的,为 此风扇转子做成可拆卸的,即 2 级盘前后均带鼓环,分别与 13 级盘连接。 风扇进口处采用了可变弯度的进口导流叶片,其结构类似于F100。由图 6 可以看出,三级静子 均采用了弯曲设计,这种叶片是利用普惠公司开发的NAsTAR 程序设计的,它可以大大缩小常规直静 子叶片上下端的分离损失区,如图8 所示。采用弯曲静子叶片后可提高风扇、压气机效率与喘振裕度。 弯曲静子叶片也用于 F119 的高压压气机及民用的 PW4084 发动机中。 3.2 高压压气机(6 级) 采用了高级压比设计, 6 级转子全采用整体叶盘结构。进口导叶与1,2 级导叶是可调节的,前 机匣采用了“Alloy c”阻燃钛合金以降低重量。静叶也采用了弯曲的静叶。为增加高压压气机出口处 机匣(该处直径最小,形成了缩腰 )的纵向刚性,燃烧室机匣前伸到压气机的3 级处,使压气机后机 匣具有双层结构,外层传递负荷,内层仅作为气流的包容环,这种结构在大型、高涵道比涡轮风扇发动 机中得到广泛采用。 3.3 燃烧室(短环形) 火焰筒为双层浮壁式,外层为整体环形壳体,在壳体与燃气接触的壁面上铆焊有薄板,薄板与壳 体间留有一定的缝隙,使冷却两者的空气由缝中流过。为了使薄板在工作中能在圆周与长度上自由膨胀, 薄板在圆周与长度上均切成一段段的,形成多片瓦块状的薄板,因此这种火焰筒又可称为瓦块式火焰简。采用浮壁式火焰筒可改善火焰筒的工作条件,不仅可提高火焰筒的寿命,与燃气接触的瓦片烧坏 后还可更换,而且还可使排气污染物减少。这种结构已在V2500、PW4084 等民用发动机上采用。 喷嘴采用了气动式喷嘴,它能改善燃油雾化质量提高燃烧完全度,减少排污,同时还能消除一般 离心式喷嘴易生积炭的问题,图 9 示出了气动式喷嘴的示意图。 3.4 高低压祸轮(单级) 高压涡轮的工作叶片用普惠公司的第三代单晶材料做成,采用了先进的气膜冷却技术。 涡轮盘采用了双重的热处理以适应外缘与轮心的不同要求,即外缘采用了提高损伤容限能力的处 理,以适应榫槽可能出现的微裂纹;轮心部分则采 用提高强度的热处理,这种在一个零件上采用两种要求不同的热处理,实属罕见。工作叶片叶尖 喷涂有一层耐磨涂层 (在 XF119 上投有采用 ),以减少性能的衰退率,这种措施在民用大型涡轮风扇发 动机中应用较多。 低压涡轮与高压涡轮转向相反。这种将高低压转子做成转向相反的设计,当飞机机动飞行时作用 于两转子上的陀螺力矩会相互抵消大部分,因此可减少外传到飞机机身的力矩,可提高飞机的操纵性, 这点对高机动性能战斗机特别重要;另外对装于两转子间的中介轴承,轴承内外环转向相反时,会大大 降低保持架与滚子组合体相对内外环的转速,对轴承的工作有利,但增加了封严的难度。理论上,高低 压涡轮反向转动时,可以不要低压涡轮导向器 (YF120 上即无),但 F119 上仍然采用了导向器。低压 涡轮轮盘中心开有大孔,以便安装高压转子的后轴承(中介轴承),这与 F404、M88 发动机的结构类 似。 3.5 加力燃烧室(分三区)、尾喷管(二元收敛扩张矢量喷管 )和燃油控制系统 加力燃烧室筒体采用 Alloy C 阻燃钛合金以减轻重量,简体内作有隔热套筒,两者间的缝隙中流 过外涵空气对简体进行冷却
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号