资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1第一单元第一单元 位置位置1、用数对数对确定点的位置,如(3,5)表示:(第三列,第五行)几几 列列 几几 行行 竖排叫列 横排叫行(从左往右看) (从前往后看)2、平移时用“上” 、 “下” 、 “前” 、 “后” 、 “左” 、 “右”来表述。3、图形左、右平移: 行不变 图形上、下平移: 列不变第二单元第二单元 分数乘法分数乘法一、分数乘法一、分数乘法(一)分数乘法的意义:(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如: 5 表示求 5 个的和是多少?98 982、分数乘分数是求一个数的几分之几是多少。 例如: 表示求的是多少?98 43 98 43(二)、分数乘法的计算法则:(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(三)(三) 、规律:(乘法中比较大小时)、规律:(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个数。(四)(四) 、分数混合运算的运算顺序和整数的运算顺序相同。、分数混合运算的运算顺序和整数的运算顺序相同。2(五)(五) 、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题二、分数乘法的解决问题(已知单位已知单位“1”“1”的量(用乘法)的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。2、找单位找单位“1”“1”: 在分率句中在分率句中分率的前面分率的前面; 或或 “占占” 、 “是是” 、 “比比”的后的后面面3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。几 几4、写数量关系式技巧: (1 1) “的的” 相当于相当于 “”“” “占占” 、 “是是” 、 “比比”相当于相当于“ ”(2 2)分率前是)分率前是“的的”: 单位单位“1”“1”的量的量分率分率= =分率对应量分率对应量(3 3)分率前是)分率前是“多或少多或少”的意思:的意思: 单位单位“1”“1”的量的量(1 1 分率)分率)= =分率对应量分率对应量三、倒数三、倒数1、倒数的意义: 乘积是乘积是 1 1 的的两个数两个数互为倒数。互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数) 。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是 1 的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。33、1 1 的倒数是的倒数是 1 1; 0 0 没有倒数没有倒数。 因为 11=1;0 乘任何数都得 0,(分母不能为010)4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; (0)a a 1 aa1 ab aa b5、真分数的倒数大于 1;假分数的倒数小于或等于 1;带分数的倒数小于 1。第三单元第三单元 分数除法分数除法一、一、分数除法分数除法1、分数除法的意义:乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为 0 的数,等于乘这个数的倒数。3、规律(分数除法比较大小时):(1) 、当除数大于 1,商小于被除数;(2) 、当除数小于 1(不等于 0) ,商大于被除数;(3) 、当除数等于 1,商等于被除数。4、 “”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题二、分数除法解决问题(未知单位未知单位“1”“1”的量(用除法)的量(用除法): 已知单位“1”的几分之几是多少,求单位“1” 。)1、数量关系式和分数乘法解决问题中的关系式相同:(1 1)分率前是)分率前是“的的”: 单位单位“1”“1”的量的量分率分率= =分率对应量分率对应量(2 2)分率前是)分率前是“多或少多或少”的意思:的意思: 单位单位“1”“1”的量的量(1 1 分率)分率)= =分率对应量分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为 X,用方程解答。(2 2)算术)算术(用除法)(用除法): 分率对应量分率对应量对应分率对应分率 = = 单位单位“1”“1”的量的量 43、求一个数是另一个数的几分之几:就 一个数一个数另一个数另一个数4、求一个数比另一个数多(少)几分之几: 两个数的两个数的相差量相差量单位单位“1”“1”的量的量 或:或: 求多几分之几:大数大数小数小数 1 1 求少几分之几: 1 1 - - 小数小数大数大数三、比和比的应用三、比和比的应用(一)、比的意义(一)、比的意义1、比的意义:两个两个数相除相除又叫做两个数的比比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示)23 前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。4、区分比和比值比比:表示两个数两个数的关系,可以写成比的形式,也可以用分数表示。比值比值:相当于商,是一个数一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、 比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值7 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为 0。 5体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式,不表示两个数相除的关系。(二)(二) 、比的基本性质、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外) ,商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0 除外) ,分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。2 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比: 用比的前项和后项同时除以它们的最大公因数。(1) 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510 = = 32235按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如: 已知两个量之比为,则设这两个量分别为。:a baxbx和6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是 4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是 3:2,工作效率比则是 2:3)第四单元第四单元 圆圆一、一、认识圆认识圆1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母 O 表示。它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母 r 表示。依 据 比 的 基 本 性 质:6把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母 d 表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7在同圆或等圆内,直径的长度是半径的 2 倍,半径的长度是直径的。21用字母表示为:d2r 或 r 2d8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有 1 一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有 2 条对称轴的图形是: 长方形只有 3 条对称轴的图形是: 等边三角形只有 4 条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。二、圆的周长二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母 C 表示。2、圆周率实验:在圆形纸片上做个记号,与直尺 0 刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数()。3圆周率:任意一个圆的周长周长与它的直径直径的比值比值是一个固定的数,我们把它叫做圆周率圆周率。用字母 (pai) 表示。(1)、一个圆的周长总是它直径的 3 倍多一些,这个比值是一个固定的数。圆周率 是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与它直径的比值是 倍,而不是 3.14 倍。7(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。4、圆的周长公式圆的周长公式: C= d d = C 或 C=2 r r = C 25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。6、区分区分周长的一半周长的一半和和半圆的周长半圆的周长:(1 1)周长的一半周长的一半:等于圆的周长2 计算方法:计算方法:2 r 2 即 r r (2 2)半圆的周长:半圆的周长:等于圆的周长的一半加直径。 计算方法计算方法:rr2r2r 即 5.14 r三、圆的面积三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母 S 表示。2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号