资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
static calculationprojekt / system:Blatec - BulgariaSigma with 5 x 10 FirstSolar modules landscape location: Blatec -Bulgariencustomer:Alpine-Energie Deutschland GmbHWolfentalstrae 29 88400 Biberach/Ri static calculation:Mounting Systems GmbHMittenwalder Strae 9a 15834 RangsdorfRangsdorf, 08.06.200912Seite :contentcontentsside 2descriptionside 3 - 4 design loadsside 5 - 7Rstab documentationside 8- contents- structural data- loads- LC, LG results - support forces and support moments- CO results - max/min/corr internal forces by element- CO results - max/min/corr support forces and support momentsSigma Blatec - Bulgaria INHALT3Seite :descriptionspecifications of location - location:Blatec - Bulgarien- height over sea level:ca. 160 m . NN- Snow load (qsk):- wind speed (vref):- reference pressure (qref):- terrain categoryIIflat terrain without any major obstacles (flat land,agricultural areas,airports, open sea,lakes,) - structure heightapprox. 2,50 mSigma specifications The mounting structure, which is calculated afterwards, was designed as structure for framed sole modules with the dimensions 1650x992x46mm. One unit consists of 24 modules Each unit consists of 5 x 12 modules in portrait orientation. The mounting structure is inclined by 25 in North-South direction. The total dimensions of the mounting structure are aprox. l/w = 12,2/2,75 m. The distance between top ground surface and lower edge of the module is approx. 0,80 m.The module bearing structure consists of 4 pairs of 2 columns each which are fixed to Sigma poles. The height of the Sigma poles above top ground surface is 20cm. The cross bracing is realized through diagonals which are mounted between the columns of one column-pair. The cross beam (vertical direction) is fixed onto the column-pair. The module bearing rail (horizontal direction) is fixed onto the cross beamsAll parts instead of screws, nuts etc. are made of extruded aluminum profiles. The Sigma poles are made of galvanized steel. 28 m/s0,49 kN/mSigma Blatec - Bulgaria DESCRIPTION0,75 kN/mDY = 3.100 DY = 3.100 DY = 3.100 DY = 10.800 4Seite : Sigma Blatec - Bulgaria DESCRIPTIONAngaben zum BaugrundFr den Standort liegen keine Angaben zu den Baugrundverhltnissen vor. Der Einsatz von Rammpfhlen (Leitplanken-Pfosten) ist vor Baubeginn durch ein Baugrundgutachten zu prfen. Der statische Nachweis ist nicht Bestandteil der Berechnung.Verwendete Unterlagen/LiteraturEurocode 1Einwirkungen auf TragwerkeEurocode 9Bemessung und Konstruktion von Aluminiumbauten (DIN V ENV 1999-1-1)DIN 18800StahlbauVerwendete SoftwareDlubal Ingenieur Software, RStab - Version 5.1.4Dlubal Ingenieur Software, DuenQ - Version 6.05side :design loads- module:FSxx- tilt angle:loading cases (LC)LC 1: dead loadmodule FS, dimensions l/w = 1200/600 mm, 11,4 kgdead load per Modul:=-load of one module for 1 m bearing rail=/2/=LC 2: snowsi=*=*=-load of one module for 1 m bearing rail=xx/2=LC 3: wind frontside 1wind suction w=* =*=F=x5x=a =x2x4/3=LC 4: wind frontside 2wind pressure w=* =*=F=x5x=a =x2x4/3=2,51 kN/m0,94 kN/m0,94 kN/m0,600 m2,82 kN/m0,491,61,20,94 kN/m2,51 kN/m2,82 kN/mqbcecpcos0,94 kN/m0,600 m0,94 kN/m320,114 kN1,200 mce1,6cp1,20,114 kN0,94 kN/m0,490,60 kN/m0,05 kN/m0,15 kN/mqb0,60 kN/m320,600 mSigma Blatec - Bulgaria LOADS0,80,75qsk1.200 mm600 mm6,8 mmFaFaFaFa6side : Sigma Blatec - Bulgaria LOADSLC 5: wind backside 1wind suction w=* =*=F=x5x=a =x2x4/3=LC 6: wind backside 2wind suction w=* =*=F=x5x=a =x2x4/3=-1,41 kN/m-3,76 kN/m-1,41 kN/m-1,41 kN/m0,600 m-4,23 kN/mcp0,491,6-1,8qbce-1,41 kN/m0,600 m-4,23 kN/m-1,41 kN/m-3,76 kN/mqb0,49-1,41 kN/mcecp1,6-1,8FaFaFaFa7side : Sigma Blatec - Bulgaria LOADSload combinations (CO)limit state of load carrying capacity CO 1prevalent load: snowEd,CO1 = 1,35 x EGk(LC1) + 1,50 x ( EQ,k,snow(LC2) + 0,6 x EQ,k,wind frontside1(LC3) )CO 2prevalent load: snowEd,CO2 = 1,35 x EGk(LC1) + 1,50 x ( EQ,k,snow(LC2) + 0,6 x EQ,k,wind frontside2(LC4) )CO 3prevalent load: wind pressureEd,CO3 = 1,35 x EGk(LC1) + 1,50 x ( EQ,k,wind frontside1(LC3) + 0,5 x EQ,k,snow(LC2) )CO 4prevalent load: wind pressureEd,CO4 = 1,35 x EGk(LC1) + 1,50 x ( EQ,k,wind frontside2(LC4) + 0,5 x EQ,k,snow(LC2) )CO 5prevalent load: wind suctionEd,CO5 = 0,9 x EGk(LC1) + 1,50 x EQ,k,wind backside1(LC5)CO 6prevalent load: wind suctionEd,CO6 = 0,9 x EGk(LC1) + 1,50 x EQ,k,wind backside2(LC6)limit state of serviceabilityCO 7prevalent load: snowEd,CO7 = EGk(LC1) + EQ,k,snow(LC2) + 0,6 x EQ,k,wind frontside1(LC3)CO 8prevalent load: snowEd,CO8 = EGk(LC1) + EQ,k,snow(LC2) + 0,6 x EQ,k,wind frontside2(LC4)CO 9prevalent load: wind pressureEd,CO9 = EGk(LC1) + EQ,k,wind frontside1(LC3) + 0,5 x EQ,k,snow(LC2)CO 10prevalent load: wind pressureEd,CO10 = EGk(LC1) + EQ,k,wind frontside2(LC4) + 0,5 x EQ,k,snow(LC2)CO 11prevalent load: wind suctionEd,CO11 = 0,9 x EGk(LC1) + EQ,k,wind backside1(LC5)CO 12prevalent load: wind suctionEd,CO12 = 0,9 x EGk(LC1) + EQ,k,wind backside2(LC6)CONTENTS
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号