资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
11.3.2角的平分线的性质复习 角的平分线的性质: 角的平分线上的点到角的两边的 距离相等。OABEPD CPD= PE几何语言描述:OC平分AOB, PDOA, PEOB探究如图,已知PDOA于D, PEOB于E, PD = PE , 请问:点P有什么特点?OABEPD点P在AOB的平分线上你能证明你的猜测吗?归纳OABEPD角的平分线的判定:到角的两边的距离相等的点在 角的平分线上。OP是AOB的平分线。 PDOA, PEOB 且PD= PE,新授OABEPD C OC平分AOB几何语言描述:2.如图,要在S区建一个集贸市场,使 它到公路,铁路距离相等,离公路与 铁路的交叉处500米。这个集贸市场应 建于何处(在图上标出它的位置,比例尺 为1:20000)?巩固公路铁路S范例 例2.如图,ABC的角平分线 BM、CN相交于点P。 求证:点 P 也在 A 的平分线上。 ABCPDEF MN辅助线作法:见角平分线就作 两边垂线段。归纳三角形角平分线的交点性质:ABCPMNG三角形的三条角平分线交于一点。2.已知:如图,BEAC于E, CF AB于F,BE、CF相交于D,BF=CE。 求证:AD平分BAC。ABCFED随堂练习3.如图,在ABC中,D是BC的中点,DEAB于E, DFAC于F,且 BE=CF。 求证:AD平分BAC。ABCDEF随堂练习2.如图,ABC的B的外角平分线BD与 C的外角平分线CE相交于点P。 求证:点P在A的平分线上。FDABPCG例题解析1.已知:如图5,BD是ABC的平分线, AB=BC,点P在BD上,PMAD,PNCD, 垂足分别是M、N, 求证:PM=PN例题解析3.已知:如图,O是三条角平分线的交 点,ODBC于D,OD=3, ABC的周长 为15,求则SABC ABCOMNG D例题解析1.如图,在四边形ABCD中, B= C=90,M是BC的中点,DM平分 ADC。 求证:AM平分DAB。DABCM拓展练习N2.如图,直线l1、 l2 、 l3 表示三条互相 交叉的公路,现要造一个垃圾中转站, 要求它到这三条公路的距离相等,则可 供选择的地址有( ) A 1处 B 2处 C 3处 D 4处 l3l1l2拓展练习3.如图所示,PBAB,PCAC,且 PB=PC,D是AP上一点。 求证: BDP = CDPPCABD1如图ABC中,C=90,E是AB中点, D在B的平分线上,DEAB,则( )ABCAE BBC=AE CBCAE D以上全不对随堂练习小结2、三角形角平分线的交点性质:1、角的平分线的判定:到角的两边的距离相等的点在角的 平分线上。三角形的三条角平分线交于一点。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号