资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
2017-2018 学年沪科版八年级数学下册名师导学案二次根式的乘除(1) 【学习目标】 1理解(a0,b0),(a0,b0),并利用它们进行计算abababab和化简 2由具体数据发现规律,导出(a0,b0),利用逆向思维得出ab,并利用它们进行计算或化简abab【学习重点】 (a0,b0),(a0,b0)及它们的运用abababab【学习难点】 发现规律,导出(a0,b0)abab行为提示:点燃激情,引发学生思考本节课学什么行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律, 从猜测到探索到理解知识解题思路:非负数的积的算术平方根等于积中多因式算术平方根的积归纳:二次根式相乘,根号不变,把被开方数相乘情景导入 生成问题 旧知回顾: 1什么是二次根式?二次根式有意义的条件是什么? 答:形如(a0)的式子叫做二次根式二次根式有意义的条件是被开方数大于等于 0.a 2二次根式的性质 1、性质 2 是什么?答:()2a(a0),|a|aa2a(a 0), a(a0).) 自学互研 生成能力知识模块一 二次根式的乘法 【自主探究】2017-2018 学年沪科版八年级数学下册名师导学案阅读教材 P67,完成下列问题: 二次根式的乘法公式是怎样的?如何证明? 答:二次根式的乘法公式:如果 a0,b0,那么有.当 a0,b0 时,abab()2()2()2ab,又()2ab,ab 的算术平方根只有一个,所以.ababababab 范例 1:计算:(1);(2)31 824315610 仿例 1:下列计算正确的是( D ) A236 B333555236 C428 D2612235236 仿例 2:等式成立的条件是( A )x1x1x21 Ax1 Bx1 C1x1 Dx1 或 x1学习笔记:几个二次根式相乘,被开方数相乘时,可将被开方数分解质因数,然后根 据(a0,b0),将能开得尽方的因数移到根号外abab行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引 导其他组进行补充、纠错,最后进行总结评分学习笔记:2017-2018 学年沪科版八年级数学下册名师导学案检测可当堂完成.知识模块二 利用积的算术平方根的性质化简二次根式 积的算术平方根的性质是什么?如何得到? 答:二次根式性质 3(即二次根式乘法公式),由等式对称性,性质 3 也abab 可以写成(a0,b0)abab 范例 2:化简:(1);(2);(3);(4).22549 121252242(2)2 8 3 解:(1)原式15;(2)原式77;(3)原式7;(4)原式15272 11249 1 4.22 22 2 36 仿例 1:计算: (1)20;(2)916 25(15) (27)5 仿例 2:已知 b0,化简的结果是( A )a3bAa Baabab Ca Daabab 变例 1:设a,b,用含有 a、b 的式子表示,下列表示正确的是( B )2354 A6ab B3ab C9ab D10ab变例 2:(怀化中考)计算的结果估计在( B )321 225 A6 至 7 之间 B7 至 8 之间 C8 至 9 之间 D9 至 10 之间交流展示 生成新知1将阅读教材时“生成的新问题”和通过“自主探究”得出的结论展示在各小组的小 黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑 2各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交 流“生成新知” 知识模块一 二次根式的乘法 知识模块二 利用积的算术平方根的性质化简二次根式 检测反馈 达成目标 【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书 课后反思 查漏补缺 1收获: _ 2存在困惑: _
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号