资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
2017-2018 学年沪科版八年级数学下册名师导学案菱形(2) 【学习目标】 1理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计 算 2通过探索菱形判定思想的过程,领会菱形的概念以及应用方法,培养学生主动探究 的思想和说理的能力【学习重点】 菱形的两个判定方法 【学习难点】 判定方法的证明方法及证明行为提示:点燃激情,引发学生思考本节课学什么行为提示:教会学生怎么交流,先对学,再群学充分在小组内展示自己,分析答案, 提出疑惑,共同解决解题思路:仿例 2 中,中点四边形各边分别是对应对角线的一半,若对角线相等,则 中点四边形四边相等,成为菱形归纳:证明菱形常用方法是用定义法,而判定 1 在一般证明中因过程复杂不太常 用情景导入 生成问题 旧知回顾: 1什么是菱形?菱形的性质有哪些? 答:一组邻边相等的平行四边形是菱形菱形性质 1:菱形的四条边都相等菱形性 质 2:菱形的对角线互相垂直,且每条对角线平分一组对角 2根据定义,如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它 是一个菱形? 答:再有一组邻边相等 自学互研 生成能力2017-2018 学年沪科版八年级数学下册名师导学案知识模块一 菱形的定义判定和判定定理1 【自主探究】 阅读教材 P9192,完成下列问题: 菱形的判定定理 1 的内容是什么? 答:定理 1:四边都相等的四边形是菱形 范例 1:顺次连接矩形各边中点所得的四边形是( C ) A矩形 B平行四边形 C菱形 D都有可能 仿例 1:下列图形中,不一定为菱形的是( C ) A两条对角线互相垂直平分的四边形 B四条边都相等的四边形 C有一条对角线平分一个内角的四边形 D用两个边长相等的等边三角形拼成的图案仿例 2:如图所示,四边形 ABCD 中,E,F,G,H 分别是边 AB,BC,CD,DA 的 中点请你添加一个条件,使四边形 EFGH 为菱形,应添加的条件是 ACBD 仿例 3:如图,O 为矩形 ABCD 对角线的交点,DEAC,CEBD. (1)试判断四边形 OCED 的形状,并说明理由; (2)若 AB6,BC8,求四边形 OCED 的面积解:(1)四边形 OCED 是菱形理由:DEAC,CEBD.四边形 OCED 是平行四 边形,在矩形 ABCD 中,OCOD,四边形 OCED 是菱形;(2)连接 OE,由菱形 OCED 得 CDOE,OEBC,又CEBD,四边形 BCEO 是平行四边形,OEBC8.S四边形 OCED OECD 8624.1 21 2 学习笔记:归纳:菱形的判定有两个途径:(1)证平行四边形和一组邻边相等(或对角线垂直);(2) 证四条边相等2017-2018 学年沪科版八年级数学下册名师导学案行为提示:积极发表自己的不同看法和解法,大胆质疑,认真倾听,做每步运算都要 有理有据,避免知识上的混淆及符号等错误学习笔记:检测可当堂完成.知识模块二 菱形的判定定理2 菱形的判定定理 2 的内容是什么?如何证明? 答:定理 2:对角线互相垂直的平行四边形是菱形 证明:如图所示,四边形 ABCD 为平行四边形,所以 AOCO,又 DBAC,DADC,四边形 ABCD 是菱形范例 2:如图所示,在ABCD 中,对角线 AC 与 BD 相交于点 O,过点 O 作 EFAC 交 BC 于点 E,交 AD 于点 F,连接 AE,CF.则四边形 AECF 是( C )A梯形 B矩形 C菱形 D正方形 仿例:如图所示,ABCD 的对角线 AC 的垂直平分线交 AD 于 E,交 BC 于 F,交 AC 于 O,则四边形 AECF 是菱形吗?为什么?解:四边形 AECF 为菱形四边形 ABCD 是平行四边形, ADBC,DACACB.EF 垂直平分 AC,OAOC,AOECOF90, AOECOF,AECF.四边形 AECF 为平行四边形EFAC,AECF 为 菱形 交流展示 生成新知2017-2018 学年沪科版八年级数学下册名师导学案1将阅读教材时“生成的新问题”和通过“自主探究”得出的结论展示在各小组的小 黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑 2各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交 流“生成新知” 知识模块一 菱形的定义判定和判定定理 1 知识模块二 菱形的判定定理 2 检测反馈 达成目标 【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书 课后反思 查漏补缺 1收获: _ 2存在困惑: _
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号