资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
新人教 B 版 2019 高考数学(理)一轮复习课时规范练1课时规范练课时规范练 4141 直线、平面垂直的判直线、平面垂直的判定与性质定与性质基础巩固组基础巩固组1 1.如图,在直角梯形ABCD中,ABCD,BCD=90,BC=CD,AE=BE,ED平面ABCD.(1)若M是AB的中点,求证:平面CEM平面BDE;(2)若N为BE的中点,求证:CN平面ADE.新人教 B 版 2019 高考数学(理)一轮复习课时规范练22 2.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F.3 3.新人教 B 版 2019 高考数学(理)一轮复习课时规范练3如图,四棱锥P-ABCD中,PA底面ABCD,底面ABCD是直角梯形,ADC=90,ADBC,ABAC,AB=AC=,点E在AD上,且AE=2ED.2(1)已知点F在BC上,且CF=2FB,求证:平面PEF平面PAC;(2)若PBC的面积是梯形ABCD面积的 ,求点E到平面PBC的距离.4 3导学号 215005614 4.如图,在正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点.(1)求证:AEDA1;(2)在线段AA1上求一点G,使得AE平面DFG.新人教 B 版 2019 高考数学(理)一轮复习课时规范练4综合提升组综合提升组5 5.如图,RtABC中,ACB=90,BC=2AC=4,D,E分别是AB,BC边的中点,沿DE将BDE折起至FDE,且CEF=60.(1)求四棱锥F-ADEC的体积;(2)求证:平面ADF平面ACF.6 6.如图(1),五边形ABCDE中,ED=EA,ABCD,CD=2AB,EDC=150.如图(2),将EAD沿AD折到PAD的位置,得到四棱锥P-ABCD,点M为线段PC的中点,且BM平面PCD.图(1)新人教 B 版 2019 高考数学(理)一轮复习课时规范练5图(2)(1)求证:平面PAD平面ABCD;(2)若四棱锥P-ABCD的体积为 2,求四面体BCDM的体积.37 7.如图,四棱锥P-ABCD的底面是边长为 1 的正方形,侧棱PA底面ABCD,且PA=2,E是侧棱PA上的动点.(1)求四棱锥P-ABCD的体积.(2)如果E是PA的中点,求证:PC平面BDE.(3)是否不论点E在侧棱PA的任何位置,都有BDCE?证明你的结论.导学号 21500562创新应用组创新应用组8 8.新人教 B 版 2019 高考数学(理)一轮复习课时规范练6如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA底面ABCD,AD=AP=2,AB=2,E为棱PD中点.7(1)求证:PD平面ABE;(2)求四棱锥P-ABCD外接球的体积.9 9.如图(1),在平面六边形ABFCDE中,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=,BF=CF=,点22M,N分别是AD,BC的中点,分别沿直线AD,BC将ADE,BCF翻折成如图(2)的空间几何体ABCDEF.(1)利用下面的结论 1 或结论 2,证明:E,F,M,N四点共面;结论 1:过空间一点作已知直线的垂面,有且只有一个;结论 2:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E-AD-B和二面角F-BC-A都是 60,求三棱锥E-BCF的体积.图(1)图(2)新人教 B 版 2019 高考数学(理)一轮复习课时规范练7导学号 21500563参考答案课时规范练 4141 直线、平面垂直的判定与性质1 1.证明 (1)ED平面ABCD,EDAD,EDBD,EDCM.AE=BE,RtADERtBDE,AD=BD.连接DM,则DMAB,ABCD,BCD=90,BC=CD,四边形BCDM是正方形,BDCM.又DECM,BDDE=D,CM平面BDE,CM平面CEM,平面CEM平面BDE.(2)由(1)知,AB=2CD,取AE中点G,连接NG,DG,在EBA中,N为BE的中点,NGAB且NG= AB,1 2又ABCD,且AB=2CD,NGCD,且NG=CD,新人教 B 版 2019 高考数学(理)一轮复习课时规范练8四边形CDGN为平行四边形,CNDG.又CN平面ADE,DG平面ADE,CN平面ADE.2 2.证明 (1)在直三棱柱ABC-A1B1C1中,A1C1AC.在ABC中,因为D,E分别为AB,BC的中点,所以DEAC,于是DEA1C1.又因为DE平面A1C1F,A1C1平面A1C1F,所以直线DE平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A平面A1B1C1.因为A1C1平面A1B1C1,所以A1AA1C1.又因为A1C1A1B1,A1A平面ABB1A1,A1B1平面ABB1A1,A1AA1B1=A1,所以A1C1平面ABB1A1.因为B1D平面ABB1A1,所以A1C1B1D.又因为B1DA1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1A1F=A1,所以B1D平面A1C1F.因为B1D平面B1DE,所以平面B1DE平面A1C1F.3 3.(1)证明 ABAC,AB=AC,ACB=45.底面ABCD是直角梯形,ADC=90,ADBC,ACD=45,AD=CD,BC=AC=2AD.2AE=2ED,CF=2FB,AE=BF= AD,2 3四边形ABFE是平行四边形,ABEF.又ABAC,ACEF.PA底面ABCD,PAEF.PAAC=A,EF平面PAC.EF平面PEF,平面PEF平面PAC.(2)解 PA底面ABCD,且AB=AC,PB=PC,取BC的中点G,连接AG,则AGBC,AG=CD=1.设PA=x,连接PG,则PG=,2+ 1PBC的面积是梯形ABCD面积的 倍,4 3 2PG=(1+2)1,即PG=2,求得x=,1 24 31 23新人教 B 版 2019 高考数学(理)一轮复习课时规范练9ADBC,AD平面PBC,BC平面PBC,AD平面PBC,点E到平面PBC的距离即是点A到平面PBC的距离,VA-PBC=VP-ABC,SPBC=2SABC,点E到平面PBC的距离为PA=.1 2324 4.(1)证明 连接AD1,BC1(图略).由正方体的性质可知,DA1AD1,DA1AB,又ABAD1=A,DA1平面ABC1D1.AE平面ABC1D1,AEDA1.(2)解 所求点G即为点A1,证明如下:由(1)可知AEDA1,取CD的中点H,连接AH,EH(图略),由DFAH,DFEH,AHEH=H,可得DF平面AHE.AE平面AHE,DFAE.又DFA1D=D,AE平面DFA1,即AE平面DFG.5 5.解 (1)D,E分别是AB,BC边的中点,DEAC,DEBC,DE=1.1 2依题意,DEEF,BE=EF=2,EFEC=E,DE平面CEF,DE平面ACED,平面ACED平面CEF.作FMEC于M,则FM平面ACED,CEF=60,FM=,3梯形ACED的面积S=(AC+ED)EC=(1+2)2=3.1 21 2四棱锥F-ADEC的体积V= Sh= 3.1 31 33 = 3(2)(法一)如图,取线段AF,CF的中点N,Q,连接DN,NQ,EQ,则NQAC,1 2新人教 B 版 2019 高考数学(理)一轮复习课时规范练10NQDE,四边形DEQN是平行四边形,DNEQ.EC=EF,CEF=60,CEF是等边三角形,EQFC,又DE平面CEF,DEEQ,ACEQ,FCAC=C,EQ平面ACF,DN平面ACF,又DN平面ADF,平面ADF平面ACF.(法二)连接BF,EC=EF,CEF=60,CEF是边长为 2 等边三角形.BE=EF,EBF=CEF=30,1 2BFC=90,BFFC.DE平面BCF,DEAC,AC平面BCF.BF平面BCF,ACBF,又FCAC=C,BF平面ACF,又BF平面ADF,平面ADF平面ACF.6 6.(1)证明 取PD的中点N,连接AN,MN,则MNCD,且MN= CD,又ABCD,AB= CD,1 21 2MNAB,MN=AB,四边形ABMN是平行四边形,ANBM,又BM平面PCD,AN平面PCD,ANPD,ANCD,由ED=EA,即PD=PA,及N为PD的中点,得PAD为等边三角形,PDA=60,又EDC=150,CDA=90,CDAD,又ANAD=A,CD平面PAD,又CD平面ABCD,新人教 B 版 2019 高考数学(理)一轮复习课时规范练11平面PAD平面ABCD.(2)解 设四棱锥P-ABCD的高为h,四边形ABCD的面积为S,则VP-ABCD= Sh=2,又SBCD= S,四面体BCDM的底面BCD上的高为 ,1 332 3 2四面体BCDM的体积VBCDM= SBCDSh=.1 3 2=1 62 32 337 7.(1)解 PA底面ABCD,PA为此四棱锥底面上的高.V四棱锥P-ABCD= S正方形ABCDPA= 122= .1 31 32 3(2)证明 连接AC交BD于点O,连接OE.四边形ABCD是正方形,AO=OC.又AE=EP,OEPC.又PC平面BDE,OE平面BDE,PC平面BDE.(3)解 不论点E在侧棱PA的任何位置,都有BDCE.证明如下:四边形ABCD是正方形,BDAC.PA底面ABCD,PABD.又PAAC=A,BD平面PAC.CE平面PAC,BDCE.8 8.(1)证明 PA底面ABCD,AB底面ABCD,PAAB,又底面ABCD为矩形,ABAD,又PA平面PAD,AD平面PAD,PAAD=A,AB平面PAD,又PD平面PAD,新人教 B 版 2019 高考数学(理)一轮复习课时规范练12ABPD,AD=AP,E为PD中点,AEPD,AEAB=A,AE平面ABE,AB平面ABE,PD平面ABE.(2)解 四棱锥P-ABCD外接球球心是线段BD和线段PA的垂直平分线交点O,由已知BD=2+ 2=4,(2 7)2+ 222设M为BD中点,AM=2,OM= AP=1,21 2OA=2+ 2=3,(2 2)2+ 12四棱锥P-ABCD外接球的体积是 OA3=36.4 39 9.(1)证明 由题意,点E在底面ABCD的射影在MN上,可设为点P,同理,点F在底面ABCD的射影在MN上,可设为点Q,则EP平面ABCD,FQ平面ABCD,平面EMP平面ABCD,平面FNQ平面ABCD,又MN平面ABCD,MN平面EMP,MN平面FNQ,由结论 2:过平面内一条直线作该平面的垂面,有且只有一个,得到E,F,M,N四点共面.(2)解 二面角E-AD-B和二面角F-BC-A都是 60,EMP=FNQ=60,EP=EMsin 60=,32三棱锥E-BCF的体积VE-BCF=VABCDEF-VE-ABCD=23- (42)1 3(12 2)32+(1232 2)1 3.32=32
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号