资源预览内容
第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
第9页 / 共21页
第10页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第第2 2课时课时 复数代数形式复数代数形式 的加减运算及其几何意义的加减运算及其几何意义导 学 固 思. . . 1.理解复数代数形式的加减运算规律.2.复数的加减与向量的加减的关系.导 学 固 思. . . 实数可以进行加减运算,并且具有丰富的运算律,其运算结果仍是实数;多项式也有相应的加减运算和运算律;对于引入的复数,其代数形式类似于一个多项式,当然它也应有加减运算,并且也有相应的运算律.导 学 固 思. . . 问题1依据多项式的加法法则,得到复数加法的运算法则.设z1=a+bi,z2=c+di是任意两个复数,那么(a+bi)+(c+di)= , 很明显,两个复数的和仍然是一个确定的复数.(a+c)+(b+d)i导 学 固 思. . . 问题2复数的加法满足交换律、结合律.即z1+z2= ,(z1+z2)+z3= . z2+z1z1+(z2+z3)利用向量加法讨论复数加法的几何意义向量加法遵循平行四边形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相加.故复数相加就是实部与虚部分别相加得到一个新的复数.问题3导 学 固 思. . . 问题4如何理解复数的减法?复数减法是复数加法的逆运算.向量减法遵循三角形法则,在直角坐标系中从横纵坐标上分析就是横纵坐标分别相减.故复数相减就是实部与虚部分别相减得到一个新的复数.导 学 固 思. . . 1 设z1=3-4i,z2=-2+3i,则z1-z2在复平面内对应的点位于( ).A.第一象限 B.第二象限C.第三象限 D.第四象限【解析】(3-4i)-(-2+3i)=5-7i.D导 学 固 思. . . 23C复数z1=9+3i,z2=-5+2i,则z1-z2= . 【解析】z1-z2=(9+3i)-(-5+2i)=14+i.14+i导 学 固 思. . . 4已知复数z1=7-6i,z1+z2=-4+3i.(1)求z2;(2)求z1-2z2.【解析】(1)z2=(z1+z2)-z1=(-4+3i)-(7-6i)=-11+9i.(2)z1-2z2=(7-6i)-2(-11+9i)=7-6i+22-18i=29-24i.导 学 固 思. . . 复数代数形式的加减法运算导 学 固 思. . . 导 学 固 思. . . 7复数代数形式加减运算的几何意义在复平面内,A、B、C分别对应复数z1=1+i,z2=5+i,z3=3+3i,以AB、AC为邻边作一个平行四边形ABDC,求D点对应的复数z4及AD的长.导 学 固 思. . . 导 学 固 思. . . 复数加减运算的综合应用已知实数a0,b0,复数z1=a+5i,z2=3-bi,|z1|=13,|z2|=5,求z1+z2.导 学 固 思. . . 复数z1=2+3i,z2=4-5i,z3=-6i,求z1+z2-z3,并说明z1+z2-z3在复平面内对应的点所在的象限.【解析】z1+z2-z3=(2+3i)+(4-5i)-(-6i)=6+4i,z1+z2-z3在复平面内对应的点为(6,4),在第一象限.导 学 固 思. . . 导 学 固 思. . . 已知实数aR,复数z1=a+2-3ai,z2=6-7i,若z1+z2为纯虚数,求a的值.导 学 固 思. . . 1.复数z1=-3+4i,z2=6-7i,则z1+z2等于( ).A.3-3i B.3+3i C.-9+11i D.-9-3iAA导 学 固 思. . . 3.复数z1=-2+3i,z2=4+3i,则z1-z2= .【解析】z1-z2=(-2+3i)-(4+3i)=-6.-6导 学 固 思. . . 4.已知aR,复数z1=2+(a+2)i,z2=a2+2a-1+3i,若z1+z2为实数,求z1-z2.【解析】z1+z2=a2+2a+1+(a+5)i,aR,z1+z2为实数,a+5=0,a=-5,z1=2-3i,z2=14+3i,z1-z2=-12-6i.导 学 固 思. . .
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号