资源预览内容
第1页 / 共49页
第2页 / 共49页
第3页 / 共49页
第4页 / 共49页
第5页 / 共49页
第6页 / 共49页
第7页 / 共49页
第8页 / 共49页
第9页 / 共49页
第10页 / 共49页
亲,该文档总共49页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第六章 两种常用的概率分布第一节 概率 第二节 二项分布 第三节 正态分布第一节 概率n一、事件及其概率n(一)随机事件n 概率论:是从量的方面研究随机现象的 统计规律的科学。n 随机现象:是指在相同条件下反复进行 观察或实验,其结果无法事先预定的现象 。n 如:掷硬币,其结果有两个,正面或反 面。在随机现象中出现的各种可能结果, 称为随机事件,简称事件。n 在每次试验中一定发生的事件,称为必然事件;而一定不会发生的事件,称为不可能事件。如纯水在标准大气压下零度结冰等。n(二)事件的概率n 1、频率:对于随机事件A,如果在N次试验中出现a次,则A发生的频率记作(6.1)频率满足不等式0F(A)1。若A是必然事件,则F(A)=1,若A是不可能事件,则F(A)=0。2、经验概率计数某事件在一系列试验中发生的次数,然后计算发生次数与试验总 次数的比值得到频率。试验次数越多,某事件发生的频率会在某个常数上下波动。当试验次数无穷时该 事件发生的频率会与一常数相等,把这一常数称为某事件的概率。(统计定义)n 3、先验概率n 试验满足:试验中各种可能结果(基本事件)是有限的,并且每种结果发生的可能性是不变时,则某事件发生的概率等于该事件包含的基本事件数(K)除以试验中可能发生的基本事件总件数(N)之商。6.2n 经验概率是由计算事件发生的频率而得 ,先验概率是在实践之前利用有关事实确定 的。前者给出了概率的操作性定义,后者提 供了概率的理论上的基本定义。n 4、概率的性质(1)对任一事件A,有0P(A)1。 (2)不可能事件的概率等于零。 (3)必然事件的概率等于1。n 5、小概率事件在统计推断中,将一次试验中发生的概 率小于0.05的事件,称为小概率事件。认为 它是一次试验中几乎不可能发生的事件。二、概率的两个基本法则n(一)概率的加法法则n两个互不相容(或互斥)事件A、B之和的概率等于两个事件分别发生的概率,即nP(A+B)=P(A)+P(B)n在一次试验中不可能同时出现的事件称为互不相容事件。n例1 在9道题中,有6道选择题,2道是非题,1道填空题,随机抽出一题,求抽出的为是非或选择题的概率是多少?n解:高抽出是非题为事件A,抽出选择题为事件B,随机抽一题,只能是抽取三类题中的一题,所以A,B为互不相容事件。“抽出的为是非或选择题”意思是无论抽得两种题中的哪一种都表示该事件发生了,因此是 求两个事件之和的概率P(A+B)。n P(A)=2/9, P(B)=6/9n所以P(A+B)=P(A)+P(B)=8/9(二)概率的乘法法则n两个相互独立事件A、B之积的概率等于两个事件分别发生的概率的积,即nP(AB)=P(A) P(B)n两个相互独立事件就是指一个事件发生的概率与另一个事件的发生无关,两个事件的积就是指两个事件同时发生的事件。n例2 两道四选一题,凭猜测做对一题的概率是多少?n解:设第一题做对为事件A,做错为事件 ,第 二题做对为事件B,做错为事件 ,做对第一题 的概率为P(A ),做对第二题的概率为P( B ),所以做对任意一题的概率为P(A )+ P( B )=P(A)P( )+P( )P(B)=1/4*3/4+3/4*1/4=3/8第二节 二项分布n(一)二项分布的概念n 所谓分布的指随机变量的概率分布。n 如果一次试验中只会发生两种结果,非A即B,A和B就是对立事件。发生A和B的概率分别为p和q,显然P(A)+P(B)=p+q=1。而且 重复多次试验时,各次试验结果之间互不影响,各次试验n结果之间是相互独立事件,则在n次试验中,A事件可能出现的次数k(k=0,1,n)是随机的,也就是有n+1个概率值。A事件出现各种可能结果这一随机变量的概率分布就叫二项分布。二项分布中A事件出现的k次的概率与二项展开式的各项相对应。n二项式定理:二项分布中A事件出现k次的概率与上式中各项 对应,通式为(6.5)(6.6)例3 凭猜测做五道是非题,答对的概率p=1/2,答错的概率q=1/2,问五题中答对k(k=0,1,2,3,4,5)题的概率各是多少?解:根据二项式定理答对5题的概 率1/32答对4题的概 率5/32答对3题的概 率10/32 答对0题的概 率1/32n5题中答对各种可能结果的概率之和为1。所以在二项分布中,n+1项的概率之和为1。若p=q,则概率分布呈对称性,与两端等距的项的概率相等。若pq,n较小时,概率分布不对称,当n较大时(大于等于30或50),概率分布逐步对称。n(二)二项分布的平均数与标准差n (对随机变量k进行计算)n平均数:n =npn标准差:n =二、二项分布的应用n 例4 某个学生一次测验回答20道是非题,每题1分,他得了18分,问(1)凭猜测得18分的概率是多少?(2)他的成绩若在18分以上,是否是凭猜测得到的?n 解:(1)p=0.5,q=0.5,n=20,k=18,代入公式(6.6)得即凭猜测得18分的可能性只有十万分之十八。(2)依题意应首先求该学生得18分,19分、20分三种 分数的概率之和是多少,然后从这个概率的大小判断他 是否是凭猜测得到这个分数。同样P(19)=0.000019P(20)=0.000000095三者之和为0.000201,即凭猜测得18分以上的概 率只有万分之二,可以断定,他得18分以上不是凭猜 测得到的。第三节 正态分布n一、正态分布的概念n 正态分布是指在一个概率分布中,中间频数多,两端频数相对称地减少,形成一种“钟”形对称的理论概率分布。n 图6-1 正态分布 在二项分布中,当p=q,当均数np=5,n=10时,二项分布可看作正态分布的近似形。图6-2 平均数、标准差相同的二项分布直条图和正态分布图(二)正态分布曲线n图6-1为正态分布曲线,其方程为其中,Y为正态分布曲线的高度,表示 随机变量的概率的大小或观测值出现的相 对次数,X为观测值,即随机变量的可能 取值;、分别为 X的平均数和标准差 ,e=2.71828,=3.1416。(6.9)n 从式6.9可看出,Y的值与离差|X-|的绝 对值 有关,它是以X=这一点的纵线为对 称轴的轴对 称图形。它的位置和形状由平 均数和标准差决定。在同一直角坐标系 中,平均数的大小决定图形的位置左移或 右移,当较小时,图形向左移;当较大 时,图形向右移。见图 6-3(a)=0=1=5=1图6-3(a)标准差的大小决定图形的陡峭平缓程度,即决定纵线高度 的最大值。当标准差较大时,概率分布的离中趋势较大, 观测值分散在较大范围内,纵线高度的最大值较小,正态 分布曲线形状较平缓;当标准差较小时,概率分布的离中 趋势较小,观测值分散在较小范围内,纵线高度的最大值 较大,正态分布曲线形状较陡峭。如图6-3(b)图6-3(b)=0.5=1=1.6在无数条正态分布曲线中有一条曲线 =0,=1,这条曲线称为标 准正态曲线,见图 6-3(a)中左侧的一条曲线。其方程简化为二、标准正态分布曲线的特点1、曲线最高点为Z=0,Y=0.3989,曲线下的总面积即概率总和为1,对称轴左右各0.5。2、曲线是以过Z=0的纵线为对称轴呈钟形的轴对称图形。3、标准正态分布的平均数、中位数、众数三点重合在Z=0这一点上。4、曲线与对称轴交点处Y值最大,即此处观测值的相对次数最大,概率最大;曲线向两侧先快后慢地下降,在Z=1处有两个拐点;横轴是标准正态曲线的水平渐近线,曲线向两侧逐渐接近横轴,但永不相交。三、正态分布表n(一)正态分布表的结构(P240)n 它是通过公式(6.10)计算得到的。n 表中第一列给出了从0到3.99的Z值,第二列给出了与Z对应的过点Z的纵线的高度Y值,第三列给出了曲线下面积P值是过Z=0人纵线与过表中某Z点人纵线所夹图形的面积比率,即相应区间的随机变量的概率。(二)正态分布表的使用n 已知Z值查出对应的P值和Y值;已知P 值查出对应的Z值和Y值。n1、已知Z值,求P值。n例5 在正态分布表中:n(1)求Z=-1与Z=1之间的面积比率。n解:查表,当Z=1时,P1=0.34134,由它的 对称性,当Z=-1时,P2=0.34134,所以所 求的面积比率为:P1+P2=0.68268。(2)求 Z=-2.58与Z=2.58之间的面积比率.解:查表,当Z=2.58时,P1=0.49506,由它 的对称性,当Z=-2.58时,P2=0. 49506, 所以所求的面积比率为:P1+P2=0.99012 。 例6 利用正态分布表求:(1)正态曲线下Z=1.34处左侧的面积。(2) 正态曲线下Z=2.16处右侧的面积。(3)正态曲线下Z=-1.64处左侧的面积。(4)正态曲线下Z=-1.5处右侧的面积。解:(1)查表得,Z=1.34,P=0.40988, 由于正态曲线对称轴左侧的面积为0.5, 所以所求面积为:0.5+0.40988=0.90988.(2) z=2.16,p=0.48461,由于对称轴右侧的面积为0.5,故所求面积为:0.5-0.48461=0.01539.(3)查表得,Z=1.64时,P=0.44950,所以Z=-1.64时,P=0.44950,即它与Z=0所夹面积为P=0.44950,故所求面积为:0.5-P=0.0505.(4) 当Z=1.5时,P=0.43319,所以当Z=-1.5时,P=0.43319,故所求面积为:0.5+P=0.93319.2、已知P值,求Z值。n例7 利用正态分布表,求:n(1)求中央50%的面积操作的下限Z值和上限Z值。n(2)求正态曲线下右尾20%的面积的下限Z值。n(3)求正态曲线下左侧30%的面积的上限Z值。解:(1)由于正态曲线的对称性,中央50%的面积为对称轴左右两侧各25%的面积的和。所以P=0.25,查附表,表中没有恰等于0.25的P值,可以用误差最小的近似值0.24857作为P的近似值,对应的Z=0.67,故Z的下限为-0.67,Z的上限为0.67。(2)所要求的Z值是表中P=0.5-0.2=0.3处对应的Z值,取最近似的值P=0.29955,其对应的Z值为0.84,故所求的下限Z值为0.84。(3)对称轴与过Z值点纵线所夹面积为P=0.5-0.3=0.2,表中最近的P值为0.19847,其对应的Z=0.52,它的对称点为Z=-0.52,为所求。四、正态曲线下面积的应用n(一)推求考试成绩中特定区间的人数n例8 已知某年级200名学生考试成绩呈正态分布,平均分为85分,标准差为10分,学生甲的成绩为70分,问全年级成绩比学生甲低的学生人数是多少?n解:属于已知Z值求P值问题。一般分3步完成:a)计算甲生成绩的标准分数;b)根据Z值查表求得对称轴与过Z值纵线所夹的面积; 再计算出Z值左侧的曲线面积;c)将面积比率乘以总人数,即可得比甲生分数低的学 生的实际人数。甲的标准分数: =(70-85)/10=-1.5查表,Z=1.5时,P=0.43319,故Z=-1.5左侧的面 积为:0.5-0.43319=0.06681。200*0.06681=13(人),所以全年级成绩比学生 甲低的学生人数是13人。例9 某次升学考试,学生成绩符合正态分 布,1000名考生英语平均60分,标准差15分, 试求:(1)70-80分之间有多少人?(2)90分 以上有多少人?解:已知学生的分数,求某分数区间的实际人数。 属于Z-P问题。(1)Z1= =(70-60)/15=0.67Z2=
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号