资源预览内容
第1页 / 共72页
第2页 / 共72页
第3页 / 共72页
第4页 / 共72页
第5页 / 共72页
第6页 / 共72页
第7页 / 共72页
第8页 / 共72页
第9页 / 共72页
第10页 / 共72页
亲,该文档总共72页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
3 剪切和扭转13 剪切和扭转3.1 剪切3.2 薄壁圆筒的扭转 剪切虎克定律 3.3 等直圆杆扭转时的应力 3.4 等直圆杆扭转时的变形3.5 等直圆杆扭转时的应变能 3.6 非圆截面等直杆的自由扭转23.1 剪切 1.剪力和切应力螺栓连接图(a)中,螺栓主要受剪切及挤压(局部压缩)。连接件(螺栓、铆钉、键等)以及构件在与它们连接处实际变形情况复杂。F/2nF/2nF33.1 剪切键连接图(b)中,键主要受剪切及挤压。43.1 剪切剪切变形的受力和变形特点:作用在构件两侧面上的外力的合力大小相等、方向相反 ,作用线相隔很近,并使各自推动的部分沿着与合力作 用线平行的受剪面发生错动。受剪面上的内力称为剪力;受剪面上的应力称为切应力;“假定计算法”53.1 剪切2. 连接件中的剪切和挤压强度计算图a所示螺栓连接主要有三种可能的破坏:. 螺栓被剪断(参见图b和图c);. 螺栓和钢板因在接触面上受压而发生挤压破坏(螺栓被压扁,钢板在螺栓孔处被压皱)(图d);. 钢板在螺栓孔削弱的截面处全面发生塑性变形。假定计算法中便是针对这些可能的破坏作近似计算的。63.1 剪切(1) 铆钉剪切强度计算在假定计算中,认为连接件的受剪面(图b,c)上各点处切应力相等,即受剪面上的名义切应力为式中,Q为受剪面上的剪力, A为受剪面的面积。其中的许用应力则是通过同一材料的试件在类似变形情况下的试验(称为直接试验)测得的破坏剪力也按名义切应力算得极限切应力除以安全因数确定。强度条件73.1 剪切(2) 挤压强度计算在假定计算中,连接件与被连接件之间的挤压应力是按某些假定进行计算的。对于螺栓连接和铆钉连接,挤压面是半个圆柱形面(图b),挤压面上挤压应力沿半圆周的变化如图c所示,而最大挤压应力sJy的值大致等于把挤压力Pjy除以实际挤压面(接触面)在直径面上的投影。83.1 剪切故取名义挤压应力为式中,Ajy=td,t为挤压面高度,d 为螺栓或铆钉的直径。9挤压强度条件为其中的许用挤压应力sjy也是通过直接试验,由挤压破坏时的挤压力按名义挤压应力的公式算得的极限挤压应力除以安全因数确定的。应该注意,挤压应力是连接件与被连接件之间的相互作用,因而当两者的材料不同时,应校核许用挤压应力较低的连接件或被连接件。工程上为便于维修,常采用挤压强度较低的材料制作连接件。3.1 剪切103.1 剪切(3) 连接板拉伸强度计算螺栓连接和铆钉连接中,被连接件由于钉孔的削弱,其拉伸强度应以钉孔中心所在横截面为依据;在实用计算中并且不考虑钉孔引起的应力集中。被连接件的拉伸强度条件为式中:N为检验强度的钉孔中心处横截面上的轴力;A为同一横截面的净面积,图示情况下A=(b d )t。PjyNdbsst113.1 剪切当连接中有多个铆钉或螺栓时,最大拉应力smax可能出现在轴力最大即FN= FN,max所在的横截面上,也可能出现在净面积最小的横截面上。123.2 薄壁圆筒的扭转 剪切虎克定律扭转变形特点: . 相邻横截面绕杆的轴线相对转动;. 杆表面的纵向线变成螺旋线;扭转受力特点: 圆截面直杆在与杆的轴线垂直平面内的外力偶作用下发生扭转。薄壁杆件也可以由其他外力引起扭转。TT横截面绕轴线相对转动的角位移称为扭转角;横截面上的内力是作用在该截面内的力偶,称为扭矩;133.2 薄壁圆筒的扭转 剪切虎克定律通常指 的圆筒,可假定其应力沿壁厚方向均匀分布内力偶矩扭矩Mt薄壁圆筒nnTTtlMt TnntR0143.2 薄壁圆筒的扭转 剪切虎克定律圆筒两端截面之间相对转过的圆 心角j相对扭转角 j表面正方格子倾斜的角度直角 的改变量切应变 即j A BD CTT薄壁圆筒受扭时变形情况: ABC D B1A1D1 C1 DD1C1 C153.2 薄壁圆筒的扭转 剪切虎克定律TT圆周线只是绕圆筒轴线转动,其形状、大小、间距不变;表面变形特点及分析:横截面在变形前后都保持为形状、大小未改变的平 面,没有正应力产生所有纵向线发生倾斜且倾斜程度相同。横截面上有与圆轴相切的切应力且沿圆筒周向均匀分 布j A BD C163.2 薄壁圆筒的扭转 剪切虎克定律TT1.横截面上无正应力;2.只有与圆周相切的切应力,且沿圆 筒周向均匀分布;薄壁圆筒横截面上应力的分布规律分析:j A BD CABC D B1A1D1 C1 DD1C1 CnnTR0 xt 3.对于薄壁圆筒,可认为切应力沿 壁厚也均匀分布。 173.2 薄壁圆筒的扭转 剪切虎克定律薄壁圆筒横截面上切应力的计算公式:静力学条件因薄壁圆环横截面上各点处的切应 力相等得t dAnnTR0 xtR0183.2 薄壁圆筒的扭转 剪切虎克定律剪切胡克定律 由前述推导可知薄壁圆筒的扭转实验曲线TT j A BD C193.2 薄壁圆筒的扭转 剪切虎克定律钢材的切变模量值约为:这就是剪切虎克定律其中:G材料的切变模量t p剪切比例极限20 弹性模量E、泊松比 和切变模量G 之间的关系3.2 薄壁圆筒的扭转 剪切虎克定律213.3 等直圆杆扭转时的应力1.横截面上的应力(1)几何方面 相邻圆周线绕杆的轴线相对转动,但圆周的大小、形状、间 距都未变; 纵向线倾斜了同一个角度 ,表面上所有矩形均变成平行四 边形。(a)TT(b)223.3 等直圆杆扭转时的应力杆的横截面上只有垂直于半径的切应力,没有正应力 产生。平面假设等直圆杆受扭转时其横截面如同刚性平面一样绕杆的 轴线转动。推论:(a)TT(b)233.3 等直圆杆扭转时的应力TT dj DGGEMtMtO1O2ababdxDArrdj DGGEO1O2DArrdxd横截面上任一点处的切应变随点的位置的变化规律243.3 等直圆杆扭转时的应力即相对扭转角沿杆长的变化率,对于给定的横 截面为常量dj DGGEMtMtO1O2ababdxDArrdj DGGEO1O2DArrdxd253.3 等直圆杆扭转时的应力剪切胡克定律(2)物理方面(3)静力学方面称为横截面的 极惯性矩 trdA trdA rrrO令得Mt263.3 等直圆杆扭转时的应力Od等直圆杆扭转时横截面上切应力计算公式rtmaxtrtmaxMt273.3 等直圆杆扭转时的应力发生在横截面周边上各点处。称为扭转截 面系数最大切应力tmaxtmax令即OdrtrMt28同样适用于空心圆截面杆受扭的情形tmaxtmaxODdMtrtr3.3 等直圆杆扭转时的应力29(4)圆截面的极惯性矩Ip和扭转截面系数Wp实心圆截面:Odrrd3.3 等直圆杆扭转时的应力30空心圆截面:DdrrOd3.3 等直圆杆扭转时的应力31注意:对于空心圆截面DdrrOd3.3 等直圆杆扭转时的应力32传动轴的外力偶矩:传动轴的转速 n ;某一轮上 所传递的功率 NK (kW)作用在该轮上的外力偶矩T 。已知:一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:T1 T2 T3 n从动轮主动轮从动轮3.3 等直圆杆扭转时的应力333.3 等直圆杆扭转时的应力传动轮的转速n 、功率P 及其上的外力偶矩T 之 间的关系:343.3 等直圆杆扭转时的应力强度条件:等直圆轴材料的许用切应力三类强度问题计算: (1)强度校核;(2)截面设计;(3)计算许用扭转荷载 353.3 等直圆杆扭转时的应力例1 实心圆截面轴和空心圆截面轴 (a = d2/D2 =0.8) 的材料、扭转力偶矩 T和长度l 均相同。试求在两圆轴横 截面上最大切应力相等的情况下,D2/d1之比以及两轴的 重量比。(a)T T d1lT (b)T lD2d2363.3 等直圆杆扭转时的应力解:已知得37两轴的重量比可见空心圆轴的自重比实心圆轴轻。讨论:为什么说空心圆轴比实心圆轴更适合于做受扭构 件?3.3 等直圆杆扭转时的应力38例2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段 直径 d2=100mm 。扭转力偶矩 TA=22 kNm, TB=36 kNm, TC=14 kNm。 材料的许用切应力t = 80MPa ,试校核该轴的强度。解: (1)求内力,作出轴的扭矩图 2214Mt图(kNm )TA TBTC ACB3.3 等直圆杆扭转时的应力39BC段AB段(2)计算轴横截面上的最大切应力并校核强度即该轴满足强度条件。2214Mt图(kNm )3.3 等直圆杆扭转时的应力403.3 等直圆杆扭转时的应力2.斜截面上的应力 切应力互等定理此处为以横截面、径截面以及与表面平行的面 从受扭的等直圆杆表面处截取一微小的正六面 体单元体MMxyzabOcddxdydztttt自动满足存在t得413.3 等直圆杆扭转时的应力单元体的两个相互垂直的截 面上,与该两个面的交线垂直的 切应力数值相等,且均指向(或 背离) 两截面的交线。切应力互等定理单元体在其两对互相垂直 的平面上只有切应力而无正应 力的状态称为纯剪切应力状态 。dabcttttxyzabOcddxdydztttt423.3 等直圆杆扭转时的应力斜截面上的应力:假定斜截面ef 的面积为d Aaefdabcttttxantttaahxsafebax433.3 等直圆杆扭转时的应力讨论:1.2.此时切应力均为零。解得ttttx4545smaxsmaxsminsminf tattaebahxsax443.4 等直圆杆扭转时的变形扭转时的变形两个横截面的相对扭转角j扭转角沿杆长的变化率相距d x 的微段两端截面间相对 扭转角为TTjdj DMtTO1O2ababdxDA45对于等直圆杆:称为等直圆杆的扭转刚度相距l 的两横截面间相对扭转角为T T j(单位:rad)3.4 等直圆杆扭转时的变形46刚度条件: 等直圆杆在扭转时的刚度条件:对于精密机器的轴对于一般的传动轴常用单位:/m3.4 等直圆杆扭转时的变形47例3 由45号钢制成的某空心圆截面轴,内、外直径 之比a = 0.5。已知材料的许用切应力t = 40MPa , 切变模量G=80GPa 。轴的横截面上最大扭矩为 Mtmax=9.56 kNm ,轴的许可单位长度扭转角q =0.3 /m 。试选择轴的直径。解:(1)按强度条件确定外直径D3.4 等直圆杆扭转时的变形48(2)由刚度条件确定所需外直径D3、确定内外直径3.4 等直圆杆扭转时的变形493.5 等直圆杆扭转时的应变能等直圆杆仅在两端受外力偶矩 T 作用且 时或T T jjTT j50当等直圆杆各段横截面上的扭矩不同时或jABjCAT1T3 BACT2 dlABlAC3.5 等直圆杆扭转时的应变能513.6 非圆截面等直杆的自由扭转等直非圆形截面杆扭转时的变形特点横截面不再保持为平面而发生翘曲。平面假设不再成立。自由扭转(纯扭转)等直杆,两端受外力偶作用,端面可自由翘曲。由于各横截面的翘曲程度完全相同,横截面上只有切应力而无正应力。52约束扭转非等直杆,或非两端受外力偶作用,或端面不能自由翘曲。由于各横截面的翘曲程度不同,横截面上除切应力外还有附加的正应力。3.6 非圆截面等直杆的自由扭转531.矩形截面杆自由扭转时的弹性力学解一般矩形截面等直杆3.6 非圆截面等直杆的自由扭转54横截面上的最大切应力在长边中点处:Wt扭转截面系数,Wt=bb3,b 为与m=h/b相关的因数(表3-1)。横截面上短边中点处的切应力: t =ntmaxn 为与m=h/b相关的因数(表3.1)。单位长度扭转角: It相当极惯性矩, , a 为与m = h/b 相关的因数(表3.1)。3.6 非圆截面等直杆的自由扭转55表3.1 矩形截面杆在自由扭转时的因数a,b 和 nm=h/b1.01.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号