资源预览内容
第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
第9页 / 共30页
第10页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
概率论与数理统计专业优秀论文概率论与数理统计专业优秀论文 风险模型下破产概率的局部定理风险模型下破产概率的局部定理关键词:风险模型关键词:风险模型 更新风险模型更新风险模型 布朗运动布朗运动 破产概率破产概率 极值理论极值理论摘要:破产概率的渐近估计是风险理论中最重要的研究课题之一,在实践中有 重要指导作用。人们对经典的 Cram#233;r-Lundberg 风险模型的研究已经 比较完善。Embrechts 和 VeraverbekeI。J 研究了更新风险模型,在假设索赔 额是重尾分布的情况下,给出了破产概率 (x)的尾部等价关系式: (x)1/flt;,egt;(x)这个结果被认为是极值理论中的一个经典 结果。称 R(x,x+z=(x)-(x+z)为破产概率的局部解。当今,人们对破产 概率局部解的渐近性质,即破产概率局部解当 x时的情况的研究十分感兴 趣。 另一方面,实际中是不像经典风险模型那么理想化的,保险公司的总索 赔额总是会受到这样那样的因素的影响的干扰,Gerber(1970)提出的带干扰的 经典风险模型,他通过增加一个布朗运动推广了经典的 Cram#233;r- Lundberg 模型,这种模型大大增强了原有模型的描述现实的能力。 本文主 要讨论风险理论中破产概率的局部定理。论文通篇假定相对安全负荷条件 gt;0 成立。首先我们研究了在带干扰的更新风险模型和带干扰的平衡 更新风险模型下,若索赔额分布 FSlt;#39;*gt;,破产概率 的局部定理。然后研究了 Cram#233;r-Lundberg 风险模型,更新风险模型, 平衡更新风险模型和延迟更新风险模型,在假设索赔额分布 FSlt;#39;*gt;(v)时,破产概率的局部定理。最后考察了带 干扰的 Cram#233;r-Lundberg 风险模型,当索赔额分布 FSlt;#39;*gt;(v)时,得到了破产概率的局部渐近表达式, 从这个结果我们可以看到在这种情况下,干扰的影响不可忽略。 本文的主要 结果如下: 1.基于分布族 Slt;#39;*gt;的带干扰的更新风 险模型破产概率的局部定理考虑具有安全负荷条件 gt;0 的带干扰的更 新风险模型,若非格子点的索赔额分布 FSlt;#39;*gt;,则 对 Alt;,zgt;gt;0,有? 2.基于分布族 Slt;#39;*gt;的带干扰的平衡更新风险模型破产概率的局部定 理考虑具有相对安全负荷条件 gt;0 的带干扰的平衡更新模型,若非格 子点的索赔额 FSlt;#39;*gt;,则对 Alt;,zgt;gt;0,有? 3.基于分布族 Slt;#39;*gt;(v)的 Cram#233;r-Lundberg 风险模型破产 概率的局部定理考虑具有相对安全负荷条件 pgt;0 的经典 Cram#233;r-Lundberg 风险模型,若 FSlt;#39;*gt;(v), vgt;0,且 lt;,0gt;lt;#39;gt;elt;#39;vtgt;F(t)lt;c/,即 Lundberg 指数不存在,则对任意的 zgt;0,有? 4基于分布族 Slt;#39;*gt;(v)的更新 风险模型破产概率的局部定理 5基于分布族 Slt;#39;*gt;(v)的 平衡更新风险模型破产概率的局部定理 6基于分布族 Slt;#39;*gt;(v)的延迟更新风险模型破产概率的局部定理 7基于分布族 Slt;#39;*gt;(v)的带干扰 Cram#233;r- Lundberg 风险模型破产概率的局部定理正文内容正文内容破产概率的渐近估计是风险理论中最重要的研究课题之一,在实践中有重 要指导作用。人们对经典的 Cram#233;r-Lundberg 风险模型的研究已经比 较完善。Embrechts 和 VeraverbekeI。J 研究了更新风险模型,在假设索赔额 是重尾分布的情况下,给出了破产概率 (x)的尾部等价关系式: (x)1/flt;,egt;(x)这个结果被认为是极值理论中的一个经典 结果。称 R(x,x+z=(x)-(x+z)为破产概率的局部解。当今,人们对破产 概率局部解的渐近性质,即破产概率局部解当 x时的情况的研究十分感兴 趣。 另一方面,实际中是不像经典风险模型那么理想化的,保险公司的总索 赔额总是会受到这样那样的因素的影响的干扰,Gerber(1970)提出的带干扰的 经典风险模型,他通过增加一个布朗运动推广了经典的 Cram#233;r- Lundberg 模型,这种模型大大增强了原有模型的描述现实的能力。 本文主 要讨论风险理论中破产概率的局部定理。论文通篇假定相对安全负荷条件 gt;0 成立。首先我们研究了在带干扰的更新风险模型和带干扰的平衡 更新风险模型下,若索赔额分布 FSlt;#39;*gt;,破产概率 的局部定理。然后研究了 Cram#233;r-Lundberg 风险模型,更新风险模型, 平衡更新风险模型和延迟更新风险模型,在假设索赔额分布 FSlt;#39;*gt;(v)时,破产概率的局部定理。最后考察了带 干扰的 Cram#233;r-Lundberg 风险模型,当索赔额分布 FSlt;#39;*gt;(v)时,得到了破产概率的局部渐近表达式, 从这个结果我们可以看到在这种情况下,干扰的影响不可忽略。 本文的主要 结果如下: 1.基于分布族 Slt;#39;*gt;的带干扰的更新风 险模型破产概率的局部定理考虑具有安全负荷条件 gt;0 的带干扰的更 新风险模型,若非格子点的索赔额分布 FSlt;#39;*gt;,则 对 Alt;,zgt;gt;0,有? 2.基于分布族 Slt;#39;*gt;的带干扰的平衡更新风险模型破产概率的局部定 理考虑具有相对安全负荷条件 gt;0 的带干扰的平衡更新模型,若非格 子点的索赔额 FSlt;#39;*gt;,则对 Alt;,zgt;gt;0,有? 3.基于分布族 Slt;#39;*gt;(v)的 Cram#233;r-Lundberg 风险模型破产 概率的局部定理考虑具有相对安全负荷条件 pgt;0 的经典 Cram#233;r-Lundberg 风险模型,若 FSlt;#39;*gt;(v), vgt;0,且 lt;,0gt;lt;#39;gt;elt;#39;vtgt;F(t)lt;c/,即 Lundberg 指数不存在,则对任意的 zgt;0,有? 4基于分布族 Slt;#39;*gt;(v)的更新 风险模型破产概率的局部定理 5基于分布族 Slt;#39;*gt;(v)的 平衡更新风险模型破产概率的局部定理 6基于分布族 Slt;#39;*gt;(v)的延迟更新风险模型破产概率的局部定理 7基于分布族 Slt;#39;*gt;(v)的带干扰 Cram#233;r- Lundberg 风险模型破产概率的局部定理 破产概率的渐近估计是风险理论中最重要的研究课题之一,在实践中有重要指 导作用。人们对经典的 Cram#233;r-Lundberg 风险模型的研究已经比较完善。Embrechts 和 VeraverbekeI。J 研究了更新风险模型,在假设索赔额是重 尾分布的情况下,给出了破产概率 (x)的尾部等价关系式: (x)1/flt;,egt;(x)这个结果被认为是极值理论中的一个经典 结果。称 R(x,x+z=(x)-(x+z)为破产概率的局部解。当今,人们对破产 概率局部解的渐近性质,即破产概率局部解当 x时的情况的研究十分感兴 趣。 另一方面,实际中是不像经典风险模型那么理想化的,保险公司的总索 赔额总是会受到这样那样的因素的影响的干扰,Gerber(1970)提出的带干扰的 经典风险模型,他通过增加一个布朗运动推广了经典的 Cram#233;r- Lundberg 模型,这种模型大大增强了原有模型的描述现实的能力。 本文主 要讨论风险理论中破产概率的局部定理。论文通篇假定相对安全负荷条件 gt;0 成立。首先我们研究了在带干扰的更新风险模型和带干扰的平衡 更新风险模型下,若索赔额分布 FSlt;#39;*gt;,破产概率 的局部定理。然后研究了 Cram#233;r-Lundberg 风险模型,更新风险模型, 平衡更新风险模型和延迟更新风险模型,在假设索赔额分布 FSlt;#39;*gt;(v)时,破产概率的局部定理。最后考察了带 干扰的 Cram#233;r-Lundberg 风险模型,当索赔额分布 FSlt;#39;*gt;(v)时,得到了破产概率的局部渐近表达式, 从这个结果我们可以看到在这种情况下,干扰的影响不可忽略。 本文的主要 结果如下: 1.基于分布族 Slt;#39;*gt;的带干扰的更新风 险模型破产概率的局部定理考虑具有安全负荷条件 gt;0 的带干扰的更 新风险模型,若非格子点的索赔额分布 FSlt;#39;*gt;,则 对 Alt;,zgt;gt;0,有? 2.基于分布族 Slt;#39;*gt;的带干扰的平衡更新风险模型破产概率的局部定 理考虑具有相对安全负荷条件 gt;0 的带干扰的平衡更新模型,若非格 子点的索赔额 FSlt;#39;*gt;,则对 Alt;,zgt;gt;0,有? 3.基于分布族 Slt;#39;*gt;(v)的 Cram#233;r-Lundberg 风险模型破产 概率的局部定理考虑具有相对安全负荷条件 pgt;0 的经典 Cram#233;r-Lundberg 风险模型,若 FSlt;#39;*gt;(v), vgt;0,且 lt;,0gt;lt;#39;gt;elt;#39;vtgt;F(t)lt;c/,即 Lundberg 指数不存在,则对任意的 zgt;0,有? 4基于分布族 Slt;#39;*gt;(v)的更新 风险模型破产概率的局部定理 5基于分布族 Slt;#39;*gt;(v)的 平衡更新风险模型破产概率的局部定理 6基于分布族 Slt;#39;*gt;(v)的延迟更新风险模型破产概率的局部定理 7基于分布族 Slt;#39;*gt;(v)的带干扰 Cram#233;r- Lundberg 风险模型破产概率的局部定理 破产概率的渐近估计是风险理论中最重要的研究课题之一,在实践中有重要指 导作用。人们对经典的 Cram#233;r-Lundberg 风险模型的研究已经比较完 善。Embrechts 和 VeraverbekeI。J 研究了更新风险模型,在假设索赔额是重 尾分布的情况下,给出了破产概率 (x)的尾部等价关系式: (x)1/flt;,egt;(x)这个结果被认为是极值理论中的一个经典 结果。称 R(x,x+z=(x)-(x+z)为破产概率的局部解。当今,人们对破产概率局部解的渐近性质,即破产概率局部解当 x时的情况的研究十分感兴 趣。 另一方面,实际中是不像经典风险模型那么理想化的,保险公司的总索 赔额总是会受到这样那样的因素的影响的干扰,Gerber(1970)提出的带干扰的 经典风险模型,他通过增加一个布朗运动推广了经典的 Cram#233;r- Lundberg 模型,这种模型大大增强了原有模型的描述现实的能力。 本文主 要讨论风险理论中破产概率的局部定理。论文通篇假定相对安全负荷条件 gt;0 成立。首先我们研究了在带干扰的更新风险模型和带干扰的平衡 更新风险模型下,若索赔额分布 FSlt;#39;*gt;,破产概率 的局部定理。然后研究了 Cram#233;r-Lundberg 风险模型,更新风险模型, 平衡更新风险模型和延迟更新风险模型,在假设索赔额分布 FSlt;#39;*gt;(v)时,破产概率的局部定理。最后考察了带 干扰的 Cram#23
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号