资源预览内容
第1页 / 共79页
第2页 / 共79页
第3页 / 共79页
第4页 / 共79页
第5页 / 共79页
第6页 / 共79页
第7页 / 共79页
第8页 / 共79页
第9页 / 共79页
第10页 / 共79页
亲,该文档总共79页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
河北工业大学硕士学位论文现浇保温墙板受力性能的理论与试验研究姓名:张亚琴申请学位级别:硕士专业:结构工程指导教师:戎贤20081101河北工业大学硕士学位论文 I 现浇保温墙板受力性能的理论与试验研究现浇保温墙板受力性能的理论与试验研究 摘摘 要要 本文对现浇保温墙板的受力性能进行详细的试验研究和数值模拟分析。其中数值分析采用目前通用的大型非线性有限元分析软件 ANSYS。并将试验结果和数值分析结果进行对比研究,得出一些有价值的结论。 首先,通过对现浇保温墙板与 CL 墙板进行受剪试验和受弯试验,将其开裂荷载、极限荷载、裂缝发展情况、荷载挠度曲线等变化规律进行对比研究,探讨现浇保温墙板的受力性能和特点。试验结果表明现浇保温墙板与 CL 墙板的差别在于中间层插筋方式的不同,而现浇保温墙板的插筋方式可以有效地协调两侧混凝土的变形,拥有与 CL 墙板同样较高的刚度和承载能力。并且该现浇保温墙板在施工工艺上比较简便,具有研究价值。 其次,利用 ANSYS 有限元分析软件对试验的全过程进行分析。有限元分析结果与试验结果吻合的较好,有限元模型分析中极限荷载偏小,而墙体刚度大于试验得到的墙体刚度,加载初期相差较多,后期逐渐接近。裂缝发展的各个阶段形式基本一致。 最后, 根据现浇保温墙板的有限元模型, 绘制了墙板在荷载作用下的荷载挠度曲线,呈双折线型。钢筋与混凝土协同工作,插筋作为上下层混凝土的连接件,起着内力传递的作用,从而保证上下层细石混凝土板能够协同工作。并且得出各个参数对现浇保温墙板受力性能的影响规律:墙板跨度越宽,则墙板应力、钢丝应力、插筋应力以及变形均越大;混凝土板厚和聚苯板厚度增加有利于提高墙板的承载能力;插筋配筋量对各项指标有一定的影响,但是当达到能够提供足够的抗剪切能力时,增加其插筋的配筋量,就没有太大影响;墙板与主体结构相连的部位是整个墙板应力最高部位,有应力集中现象,对该部分应进行适当加强。 关键词关键词:现浇保温墙板、受力性能、有限元分析 现浇保温墙板受力性能的理论与试验研究 II THEORETICAL AND EXPERIMENTAL RESEARCH ON BEHAVIORS OF CAST-IN-PLACE HEATINSULATION WALL ABSTRACT Detailed test study and numerical simulation were made in this article to analysis the mechanical property of the cast-in-place heat insulation wall. The prevail large-scale non-linear finite element analysis software ANSYS was employed during numerical simulation analysis. Trough the comparison between the test results and numerical analysis some valuable conclusions were gotten. First of all, the shear test and bending test of the cast-in-place heat insulation wall and CL wall have been executed and after the comparison study on the development status of cracking load, ultimate load and crack and changes regulation such as load - deflection curve etc. exploring the performance and mechanical characteristics of the cast-in-place heat insulation wall. The results showed that the difference of cast-in-place heat insulation wall and CL wall is insert steel mode, and inset steel of the cast-in place heat insulation wall can correspond effectively distortion of two sides, and hold upper stiffness and bearing capacity with CL wall; and the cast-in-place heat insulation in the wall construction technique is relatively simple, with a research value. Secondly, On basis of the test study above mentioned have been executed the analysis by finite element analysis software ANSYS. The result of finite element analysis and the test has inosculated preferably. Utmost load in finite element analysis is on the low side, but stiffness is on the high side. In the initial stages of load, two kinds result is discrepancy biggish, and in the anaphase of load, these approached gradually. Finally, According to the finite element mode of cast-in-place heat insulation wall , load - 河北工业大学硕士学位论文 III deflection curve with double break linetype have been protracted. Mainly due to wall panels to reduce the overall stiffness to lower after cracking the concrete, thus causes the amount of deflection the change to increase suddenly. The steel bar and the concretes joint operation, insert steels play a role in transmission, thus guarantees on the lower level thin stone concrete slab to be able the joint operation. And obtains each parameter to the cast-in-place heat insulation wall properties of force performance influence rule: The wall width is wider, then the wall stress, the steel stress, insert steel stress as well as the distortion are bigger; The concretes thickness of slab and polystyrene board thickness to increase is advantageous in enhancing the wall bearing capacity; insert reinforcing bars quantity to have certain influence to each target, but when achieves can provide the enough anti-cutting ability, increases it to insert reinforcing bars quantity, does not have to affect too greatly; wall and connected to the main structure of the entire wall is part of the highest stress positions, there is stress concentration, the part should be appropriate to strengthen. Key words: cast-in-place heat insulation wall, force behavior, finite element analysis 河北工业大学硕士学位论文 符号说明符号说明 N剪力墙的轴向压力设计值。 A剪力墙截面面积。 wA剪力墙的腹板的面积。 计算截面处的剪跨比。 s剪力墙水平分布钢筋间距。 M弯矩设计值。 wb剪力墙截面宽度。 tf混凝土轴心抗拉强度设计值。 cf混凝土轴心抗压强度设计值。 截面有效高度。 0h0wh剪力墙截面有效高度,。 0wwhha=syhf剪力墙水平分布钢筋的抗拉强度设计值。 shA剪力墙水平分布钢筋的全部截面面积。 纵向钢筋和钢筋的销栓作用。 sV1a受压区混凝土矩形应力图的应力值与混凝土轴心抗压强度设计值的比值。 sA, sA受拉区、受压区纵向钢筋的截面面积。 抗剪力。 F0A较大钢筋的横截面积。 s该级别钢筋的屈服强度。 ssVCL 墙板腹部受压斜插钢筋承担的剪力。 混凝土层承担的剪力。 cV考虑混凝土层、纵向钢筋、纵向钢筋作用的相关系数。 I截面惯性矩。 切线模量系数,tE E=。 1sA原有 CL 墙板的底部钢筋受拉钢筋面积。 切线模量。 tEE弹性模量。 计算长度系数。 n斜截面上受压斜插钢筋的数量. 根据实验分析,取一排横向受压斜插钢筋的总数。 1受拉钢筋应变折减系数。 bx界限受压区高度。 2受拉钢筋屈服应变折减系数。 yf名义受拉极限强度。 2sA为加强抗拉承载力所配的附加钢筋。 VII 河北工业大学硕士
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号