资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
5.4 平面向量的坐标运算(2)-向量共线的坐标表示2.平面向量的坐标运算:1.向量共线充要条件:复习回顾:注:向量坐标等于终点坐标减去起点坐标AB=(3,4)、BA=(- 3,- 4)AB=(5,0)、BA=(- 5,0)AB=( 9,- 1)、BA=(-9,1)AB=(0,2)、BA=(0,- 2)B(4,1)B(1,0)(1)A(3,5) B(6,9)(2) A(-3,4) B(6,3)(3) A(0,3) B(0,5)(4) A(3,0) B(8,0)练习: 、已知A,B两点的坐标,求AB,BA的坐标:2、已知a=AB,起点坐标A,求B点坐标:(1)a=(5,- 7), A(- 1,8)(2)a=(- 2,4), A(3,- 4)3、向量a,b,c,d为相等向量,它们的坐标为 a=(x1,y1),b=(x2,y2),c=(x3,y3),d=(x4,y4),则有( )A.、 x1=- x2 ,y1= y2 B、 x3= x4 ,y3=y4 C、 x2= x4, y1= - y4 D、 x1 =x2= x3 =x4 ,y1= y2= y3= y4D如图,在平行四边形如图,在平行四边形ABCDABCD中,点中,点MM是是ABAB中点,点中点,点N N在线段在线段BDBD上,且有上,且有BN= BDBN= BD,求证:求证:MM、N N、C C三点共线三点共线。例1.已知 ,且 ,求y。例2.已知 A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系。练习:1.已知a=(4, 2),b=(6, y),且a/b,求y. y=32.已知a=(3, 4), b=(cos, sin), 且a/b, 求tan. tan=4 /33. 已知a=(1, 0), b=(2, 1), 当实数k为何值时,向量kab与a+3b平行? 并确定它们是同向还是反向. 解:kab=(k2, 1), a+3b=(7, 3),a/b, 这两个向量是反向。4.已知A, B, C三点共线,且A (3, 6), B(5, 2),若点C横坐标为6, 则C点的纵坐标为 ( ) A13 B9 C9 D13 C5. 若三点P(1, 1),A(2, 4),B(x, 9)共线, 则 ( )Ax =1 Bx=3 Cx= D51B6.设a=( , sin),b=(cos, ),且a/ b,则锐角为 ( )A30o B60o C45o D75o C例3.设点P是线段P1P2上的一点,P1、P2的坐标分别是。(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标。xyOP1P2P(1)M 解:(1)所以,点P的坐标为xyOP1P2P(2)xyOP1P2 P例3.设点P是线段P1P2上的一点,P1、P2的坐标分别是。(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标。xyOP1P2 PxyOP1P2 PxyOP1P2P直线l上两点 、 ,在l上取不同于 、 的任一点P,则P点与 的位置有哪几种情形? P在之间 , PP在 的延长线上,PP在 的延长线上. P存在一个实数,使 ,叫做点P分有向线段 所成的比能根据P点的三种不同的位置和实数与向量的积的向量方向确定的取值范围吗? 设 , ,P分 所成的比为 ,如何求P点的坐标呢? 有向线段 的定比分点坐标公式有向线段 的中点坐标公式例1已知两点 , ,求点 分 所成的比 及 y 的值 解:由线段的定比分点坐标公式,得解得例2如图, 的三个顶点的坐标分别为 , ,D是边AB的中点,G是CD上的一点,且 ,求点G的坐标 OxyCBADG解:D是AB的中点点D的坐标为 由定比分点坐标公式可得G点坐标为:OxyCBADG解:D是AB的中点点D的坐标为 由定比分点坐标公式可得G点坐标为:即点G的坐标为 7. ABC的三条边的中点分别为(2, 1)和(3, 4),(1,1),则ABC的重心坐标为 _ 8.已知向量a=(2x, 7), b=(6, x+4),当x=_时,a/b 3或7 9.若|a|=2,b =(1, 3),且a/b,则a =_
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号