资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
一元二次不等式及其解法教 学 设 计 登封市第一高级中学张凤娟1一元二次不等式及其解法教学设计一教学内容分析:1本节课内容在整个教材中的地位和作用必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用许多问题的解决都会借助一元二次不等式的解法因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用2教学目标定位根据教学课标要求、高考考试大纲说明、高二学生已有的知识储备状况,我确定了三个层面的教学目标第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力第三层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神3教学重点、难点确定本节课是利用二次函数的图象研究一元二次不等式的解法只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系二教法学法分析:信息技术教学是师生之间、学生之间交往互动与共同发展的过程。信息技术教学,要紧密联系学生的生活实际。学生是学习的主人,在教师的帮助下,小组合作交流中,利用动手操作探索,发现新知,自主学习。发挥多媒体的直观、动态功能,向学生动态演示求解一元二次不等式问题的图解方法,让学生感受动态几何的魅力,激发学习兴趣。根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,2调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,找出一元二次不等式对应的一元二次函数,用几何画板做出二次函数的图象,观察纵坐标的正负,写出一元二次不等式的解集.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系 在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。三教学过程分析:(一)联系旧知,构建新知电子白板显示:问题 1:一元二次方程的解法有哪些呢?(意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备 )问题 2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?(意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)用几何画板软件做出二次函数图象,同时改变二次项系数 a,让同学们观察,图象的变化(二)创设情景,提出问题电子白板显示:今年的植树节我校高一年级的同学去植树时遇到一个这样的问题,我们准备的树苗恰好能够栽满面积为 40 平方米的空地,而要绿化的空地是一个长比宽多 6 米的矩形,那么,矩形绿化带长为多少时,准备的树苗有剩余?(设计意图:开篇引入数学实际问题,贴近生活,直奔主题,构造悬念,激活学生的思维兴趣;让学生经历从实际情境中抽象出一元二次不等式模型的过程 )建立数学模型:分析:设绿化带长为 m.则依题意有 .x640x整理得 .2640x(设计意图:体现应用问题数学化,具体问题一般化 )3电子白板明确问题:如何求出满足不等式 的 的取值?2640xx对于 是个什么问题?如何解决?2640x(意图:1让学生明确讨论的问题是一元二次不等式;2让学生自己说出一元二次不等式的定义及它的形式 )(三)合作交流,探究新知1象 这样,只含有一个未知数,并且未知数的最高次数是 2 的不等052x式,称为一元二次不等式。2探究一元二次不等式 的解集052x怎样求不等式 的解集呢?探究:2x一元二次不等式不是我们熟悉的东西,但是大家看 和xf5)(2这是什么?052x我们十分熟悉的二次函数和一元二次方程,那么这三者之间又有着怎样的关系呢?容易知道:二次方程的有两个实数根: ,二次函数有两个零点: 。120,5x120,5x于是,我们得到:二次方程的根就是二次函数的零点。(2)用几何画板软件作图,让同学们观察图象,获得解集当 x 5 时,函数图象位于 x 轴上方,此时,y 0,即;25当 ,或 时,函数图像与 轴相交,此时, ,即xxy02当 0 x 5 时,函数图象位于 x 轴下方,此时,y 0,即 ;250x通过上述分析,我们可知,不等式 的解集是 .52|(设计意图 : 体现学生的主体性;有利于加强对图象的认识,从而加强数形结合的数学思想 ;有利于加强学生理解一元二次不等式的解相关的三个因4素;为归纳解一元二次不等式做好准备根据前面探讨的问题引导学生归纳一元二次不等式的解 )2 探究一元二次不等式 的解法2200axbcaxbca或用几何画板软件作图 ,同时改变系数 a,b,c,让同学们观察图y象的变化及解集的变化组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:抛物线 ycbxa2与 轴的相关位置的情况,也就是一元二次方程cbxa2=0 的根的情况,而一元二次方程根的情况是由判别式4三种取值情况( 0, , 0)来确定(设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点 )判别式 acb420 0 0二次函数 cbxay2( )的图象0cbxay2 cbxay2 cbxay2一元二次方程的 根02acbx有两相异实根 )(,212x有两相等实根 abx21无实根的 解 集)(221或两根之外 R的 解 集)0(2acbx21x两个之间 (四)数学运用,深化认知5例 1求不等式 230x的解集变式为:求不等式 的解集例 2解不等式 2x(设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬 )回答开篇的数学问题,什么情况下准备的树苗会有剩余?补充:矩形空地长为多少时,树苗正好将空地植满呢?什么时候会不够用?目的: 强调对于实际问题还应考虑实际情况(即长度必须大于零) 另外,再次巩固学生对三个“二次”的理解(五)练习检测,巩固收获(1)求下列一元二次不等式的解集:2514.x 6(2)函数 的定义域是 ()2yxA B1.或 21.xC D2x .(设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习然后就学生在解题中出现的问题共同纠正 )(六)归纳小结,强化思想设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点(七)布置作业,拓展延伸必做题:课本第 80 页习题 A 组 1,2.选做题:(1)若关于 的一元二次方程 有两个不m2(1)0xmx相等的实数根,求 的取值范围.6(2)已知不等式 的解集为 ,求20xab23x的,ab值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高 )四教学总结本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号