资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
解决问题的策略解决问题的策略转化转化教学内容苏教版课标本第十二册 7172 页的例 l、 “试一试”和“练一练” 、练习十四的第 13 题。教学目标:1使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。2使学生在解决问题的过程中,感受转化策略的应用。3使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的“转化”意识,提高学好数学的信心。教学重点:感受“转化”策略的价值,初步掌握转化的方法和技巧。教学难点:灵活运用“转化”的策略解决问题。教学准备:多媒体课件、作业纸。教学过程:一、教学例 1,揭示“转化”的策略1出示师:这是什么图形?(长方形)图中每个小方格的面积都是 l 平方厘米。如何求出这个长方形的面积?(54=20(平方厘米)2出示师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)3出示例 1 的两幅图,(作业纸)师:这两个图形你们学过吗?我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?(1)同桌讨论。(数方格,转化(割补)(2)动手操作?(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出“数方格” ,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。师:你是怎样进行转化的?(第一幅图:先割下上面的半圆,再将这个半圆向下平移 5 格,就转化成了 54 的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转 180 度,补到图形上半部分凹进去的地方,于是这个图形也转化成 54 的长方形)师:转化后的两个图形的面积什么关系?(都等于 20 格)师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)(4)总结评价。师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)教学内容苏教版课标本第十二册 7172 页的例 l、 “试一试”和“练一练” 、练习十四的第 13 题。教学目标:1使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。2使学生在解决问题的过程中,感受转化策略的应用。3使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的“转化”意识,提高学好数学的信心。教学重点:感受“转化”策略的价值,初步掌握转化的方法和技巧。教学难点:灵活运用“转化”的策略解决问题。教学准备:多媒体课件、作业纸。教学过程:一、教学例 1,揭示“转化”的策略1出示师:这是什么图形?(长方形)图中每个小方格的面积都是 l 平方厘米。如何求出这个长方形的面积?(54=20(平方厘米)2出示师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)3出示例 1 的两幅图,(作业纸)师:这两个图形你们学过吗?我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?(1)同桌讨论。(数方格,转化(割补)(2)动手操作?(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出“数方格” ,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。师:你是怎样进行转化的?(第一幅图:先割下上面的半圆,再将这个半圆向下平移 5 格,就转化成了 54 的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转 180 度,补到图形上半部分凹进去的地方,于是这个图形也转化成 54 的长方形)师:转化后的两个图形的面积什么关系?(都等于 20 格)师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)(4)总结评价。师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)教学内容苏教版课标本第十二册 7172 页的例 l、 “试一试”和“练一练” 、练习十四的第 13 题。教学目标:1使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。2使学生在解决问题的过程中,感受转化策略的应用。3使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的“转化”意识,提高学好数学的信心。教学重点:感受“转化”策略的价值,初步掌握转化的方法和技巧。教学难点:灵活运用“转化”的策略解决问题。教学准备:多媒体课件、作业纸。教学过程:一、教学例 1,揭示“转化”的策略1出示师:这是什么图形?(长方形)图中每个小方格的面积都是 l 平方厘米。如何求出这个长方形的面积?(54=20(平方厘米)2出示师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)3出示例 1 的两幅图,(作业纸)师:这两个图形你们学过吗?我们能用已有的面积公式直接计算它们的面积吗?它们的面积相等吗?有什么办法来比较它们面积的大小呢?(1)同桌讨论。(数方格,转化(割补)(2)动手操作?(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出“数方格” ,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。师:你是怎样进行转化的?(第一幅图:先割下上面的半圆,再将这个半圆向下平移 5 格,就转化成了 54 的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转 180 度,补到图形上半部分凹进去的地方,于是这个图形也转化成 54 的长方形)师:转化后的两个图形的面积什么关系?(都等于 20 格)师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)(4)总结评价。师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号