资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
留数定理是复变函数的定理,若要在实变函数定积 分中应用,必须将实变函数变为复变函数。这就要利 用解析延拓的概念。留数定理又是应用到回路积分的 ,要应用到定积分,就必须将定积分变为回路积分中 的一部分。3 留数在定积分计算上的应用如图,对于实积分 ,变量 x 定义在闭区间 a,b (线段 ),此区间 应是回路 的一部分。实积分 要变为回路积分,则实函数必须解析 延拓到复平面上包含回路的一个区域 中,而实积分 成为回路积分的一部分 :1. 形如 的积分, 其中R(cosq,sinq )为 cosq与sinq 的有理函数. 令 z = eiq , 则 dz = ieiq dq , 而其中f (z)是z的有理函数, 且在单位圆周|z|=1上分母不为零, 根据留数定理有其中zk (k=1,2,.,n)为单位圆 |z|=1内的 f (z)的孤立奇点.例1 计算 的值.解 由于0p1, 被积函数的分母在0q 2p内不为零, 因而积分是有意义的. 由于cos2q = (e2iq + e-2iq ) /2= (z2 + z-2) /2, 因此在被积函数的三个极点z=0, p, 1/p中只有前两个在圆周|z|=1内, 其中z=0为二级极点, z=p为一级极点.例2 计算 的值.解:令例 3解:取积分路线如图所示, 其中CR是以原点为中心, R为半径的在上半平面的半圆周. 取R适当大, 使R(z)所有的在上半平面内的极点zk都包在这积分路线内.z1z2z3y CR-RROx不失一般性, 设为一已约分式.此等式不因CR的半径R不断增大而有所改变.例 4例 5 解:3. 形如 的积分当R(x)是x的有理函数而分母的次数至少比分子的次数高一次, 且R(x)在实数轴上没有奇点时, 积分是存在的.象2中处理的一样, 由于m-n1, 故对充分大的|z|有因此, 在半径R充分大的CR上, 有z1z2z3y CR-RROxyqOpy=sinq1也可写为例6 计算 的值.解 这里m=2,n=1,m-n=1.R(z)在实轴上无孤立奇点,因而所求的积分是存在的. 在上半平面内有一级极点ai,例4 计算积分 的值.解 因为 是偶函数, 所以为了使积分路线不通过原点, 取如下图所示的路线. 由柯西积分定理, 有CrCRyxO-rrR-R令x=-t, 则有因此, 要算出所求积分的值, 只需求出极限下面将证明由于所以j (z)在z=0处解析, 且j (0)=i, 当|z|充分小时可使|j (z)|2, 而由于在r充分小时,例题
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号