资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二章,函数,函数的解析式和定义域,第6讲,(-,1),3.已知f(x)是一次函数,且f(-x)+2f(x)=2x+1,则函数f(x)=,3.已知f(x)是一次函数,且f(-x)+2f(x)=2x+1,则函数f(x)=_解析:设f(x)=ax+b且a0,因为f(-x)+2f(x)=2x+1, 所以a(-x)+b+2(ax+b)=2x+1,,4.已知f(2x-1)的定义域为(0,2,则f(x)的定义域为_.解析:因为0x2,所以-12x-13. 令t=2x-1,则f(t)的定义域为t|-10,因为xR,所以满足cosx0的x的范围是等距离离散的实数区间,对k的取值进行逐一检验,并用并集表示函数的定义域,复合函数的定义域,【例2】 已知函数f(x)的定义域是a,b,求函数yf(12x)的定义域,点评,复合函数的定义域关键是对复合函数的理解,函数yfg(x)的定义域是其中x的范围,g(x)的取值范围是函数f(x)的定义域,【变式练习2】 已知函数f(2x)的定义域为1,2,求函数f(log2x)的定义域,求函数的解析式,【解析】当x0时,g(x)x0, 所以f(g(x)f(x)x,g(f(x)g(x2)x2.,点评,求函数解析式要注意“里”层函数的值域是“外”层函数的定义域,从关系上看,f(g(x)与f(x)是同一对应关系的函数,仅是自变量的取值不同,这时g(x)的值域就是f(x)中x的范围(这是求复合函数的定义域时不可忽视的问题),【变式练习3】 已知f(1cosx)sin2x,求f(x)的解析式【解析】设u1cosx,则cosx1u, 所以cos2x(1u)2, 所以sin2x1(1u)2u22u. 因为u1cosx0,2, 所以f(x)x22x,x0,2,3,7,【解析】因为x1,3,所以2x13,7,即函数f(x)的定义域是3,7,0,2,解析:由题意令2x-x20得0x2.即定义域为0,2,3.若函数f(x)是一次函数,且ff(x)4x3,则函数f(x)的解析式是_,f(x)2x1或f(x)2x3,4.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y_,202x,x(5,10),2已知f(x)的定义域是a,b,求f(g(x)的定义域是指满足ag(x)b的x的取值范围而已知f(g(x)的定义域是a,b指的是xa,b3在应用问题中求函数的定义域时,要考虑实际背景的含义4函数定义域一定要写成集合的形式,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号