资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
3.3.23.3.2 两点间的距离两点间的距离【课时目标】 1理解并掌握平面上两点之间的距离公式的推导方法2能熟练应 用两点间的距离公式解决有关问题,进一步体会解析法的思想1若平面上两点P1、P2的坐标分别为P1(x1,y1),P2(x2,y2),则P1、P2两点间的距 离公式为 |P1P2|_ 特别地,原点O(0,0)与任一点P(x,y)的距离为|OP|_ 2用坐标法(解析法)解题的基本步骤可以概括为: 第一步:_ 第二步:_ 第三步:_一、选择题 1已知点A(3,4)和B(0,b),且|AB|5,则b等于( ) A0 或 8 B0 或8 C0 或 6 D0 或6 2以A(1,5),B(5,1),C(9,9)为顶点的三角形是( ) A等边三角形 B等腰三角形 C直角三角形 D无法确定 3设点A在x轴上,点B在y轴上,AB的中点是P(2,1),则|AB|等于( ) A5 B42 C2 D2510 4已知点A(1,2),B(3,1),则到A,B两点距离相等的点的坐标满足的条件是( ) A4x2y5 B4x2y5 Cx2y5 Dx2y5 5已知A(3,8),B(2,2),在x轴上有一点M,使得|MA|MB|最短,则点M的坐标 是( ) A(1,0) B(1,0)C D(22 5,0)(0,22 5) 6设A,B是x轴上两点,点P的横坐标为 2,且|PA|PB|,若直线PA的方程为 xy10,则直线PB的方程为( ) Axy50 B2xy10 C2yx40 D2xy70二、填空题 7已知点A(x,5)关于点C(1,y)的对称点是B(2,3),则点P(x,y)到原点的距 离是_ 8点M到x轴和到点N(4,2)的距离都等于 10,则点M的坐标为_ 9等腰ABC的顶点是A(3,0),底边长|BC|4,BC边的中点是D(5,4),则此三角形 的腰长为_三、解答题 10已知直线l:y2x6 和点A(1,1),过点A作直线l1与直线l相交于B点,且|AB|5,求直线l1的方程11求证:三角形的中位线长度等于底边长度的一半能力提升 12求函数y的最小值x28x20x2113求证: 2x2y2x21y21x2y21x21y221坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离反过来,已知两点间的距离也可以根据条件求其 中一个点的坐标 2平面几何中与线段长有关的定理和重要结论,可以用解析法来证明用解析法解题 时,由于平面图形的几何性质是不依赖于平面直角坐标系的建立而改变的,但不同的平面 直角坐标系会使计算有繁简之分,因此在建立直角坐标系时必须“避繁就简” 3 33 32 2 两点间的距离两点间的距离 答案答案知识梳理 1 x2x12y2y12x2y2 2建立坐标系,用坐标表示有关的量 进行有关代数运算 把代数运算结果“翻译” 成几何关系 作业设计 1A 由5,解得b0 或 8324b2 2B3C 设A(a,0),B(0,b),则 2, 1,a 2b 2 解得a4,b2, |AB|25 4B 设到A、B距离相等的点P(x,y), 则由|PA|PB|得, 4x2y5 5B(如图)A关于x轴对称点为 A(3,8), 则AB与x轴的交点即为M, 求得M坐标为(1,0) 6A 由已知得A(1,0),P(2,3),由|PA|PB|,得B(5,0),由两点式得直线PB 的方程为xy50 717 解析 由题意知Error!解得Error! d421217 8(2,10)或(10,10) 解析 设M(x,y),则|y|10x42y22 解得Error!或Error! 926解析 |BD| |BC|2,1 2 |AD|2在 RtADB中,5324025 由勾股定理得腰长|AB|2222 52610解 由于B在l上,可设B点坐标为(x0,2x06) 由|AB|2(x01)2(2x07)225, 化简得x6x050,解得x01 或 52 0 当x01 时,AB方程为x1, 当x05 时,AB方程为 3x4y10 综上,直线l1的方程为x1 或 3x4y1011证明 如图所示,D,E分别为边AC和BC的中点,以A为原点,边AB所在直线为x轴建立 平面直角坐标系 设A(0,0),B(c,0),C(m,n), 则|AB|c, 又由中点坐标公式,可得D,E,(m 2,n 2)(cm 2,n2)所以|DE| ,cm 2m 2c 2所以|DE| |AB|1 2 即三角形的中位线长度等于底边长度的一半 12解 原式可化为 yx42022 x02012 考虑两点间的距离公式,如图所示, 令A(4,2),B(0,1),P(x,0), 则上述问题可转化为:在x轴上求一点P(x,0), 使得|PA|PB|最小 作点A(4,2)关于x轴的对称点A(4,2), 由图可直观得出 |PA|PB|PA|PB|AB|, 故|PA|PB|的最小值为AB的长度 由两点间的距离公式可得|AB|5,42212 所以函数y的最小值为 5x28x20x21 13证明 如图所示,设点O(0,0),A(x,y),B(1,0),C(1,1),D(0,1),则原不等式左 边|OA|AD|AB|AC|, |OA|AC|OC|,|AB|AD|BD|,22 |OA|AD|AB|AC|2(当且仅当A是OC与BD的交点时等号成立),故原不2 等式成立
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号