资源预览内容
第1页 / 共32页
第2页 / 共32页
第3页 / 共32页
第4页 / 共32页
第5页 / 共32页
第6页 / 共32页
第7页 / 共32页
第8页 / 共32页
第9页 / 共32页
第10页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
关于人脸检测与识别算法的调研报告1目录目录1 绪论.21.1 研究背景与意义.21. 2 人脸检测与识别技术发展状况 41.2.1 人脸检测技术发展状况 .41.2.2 人脸识别技术的发展现状61.3 人脸识别的优点及技术难点 92 人脸检测与识别技术112.1 人脸检测方法122.2 人脸识别方法.133 人脸特征提取和检测及识别算法介绍153.1 人脸特征提取方法.153.2 人脸检测算法.163.2.1 基于特征的人脸检测 .163.2.2 基于统计的人脸检测 .173.2.3 基于肤色模型的人脸检测 .173.3 人脸识别算法.183.3.1 基于静态图像的识别 .183.3.2 基于视频图像的人脸识别 .193.3.3 基于隐马尔科夫(HMM)的人脸识别204 人脸识别与检测的相关实例 .204.1 实例一.204.2 实例二.234.3 实例三.255 结束语.29关于人脸检测与识别算法的调研报告2参考文献.30关于人脸检测与识别算法的调研报告关于人脸检测与识别算法的调研报告1 绪论绪论1.11.1 研究背景与意义研究背景与意义随着现代计算机技术的发展,人脸识别技术在安全验证、人机交流、公安系统等方面得到了广泛的使用,并且在视频会议、档案管理、医学医疗等方面也发挥着很大的作用。所以,人脸识别技术己经逐渐成为人们在人工智能领域所研究的重点课题。采用机器进行的人脸的自动识别具有很大的挑战性,这不仅仅是由于人脸的面部结构复杂,还因为人面部肌肉的运动使得人脸成为一种非刚性物体,非刚性物体的识别与刚性物体的识别相比,更加困难。人脸会随着年龄的增长而产生变化,而且人类表情丰富,还会受成像距离、成像角度以及光照等因素的变化的影响,造成的人脸图像具有很大的差异。此外,由于同一人的不同面部图像受到采集条件的限制,会随条件的变化而改变,而人脸具有相似的结构特征,所以这就给人脸识别算法的分析计算带来很大的困扰。总而关于人脸检测与识别算法的调研报告3言之,人脸识别是一项包含有计算机视觉、图像处理、神经网络等学科的,非常具有挑战性的一门技术。 研究人脸识别在理论和技术上都有重要的意义:一是可以推进对人类视觉系统本身的认识;二是可以满足人工智能应用的需要。采用人脸识别技术,建立自动人脸识别系统,用计算机实现对人脸图像的自动识别有着广阔的应用领域和诱人的应用前景1。 同时人脸识别作为一种生物体征识别与其它较成熟的识别方法(如指纹、虹膜、DAN 检测等)相比有以下几个优点: 无侵犯性,人脸图像的获取不需要被检测人发生身体接触,可以在不惊动被检测人的情况下进行; 低成本、易安装,人脸识别系统只需要采用普通的摄像头、数码摄像机或手机上的嵌入式摄像头等被广泛使用的摄像设备即可,对用户来说也没有特别的安装要求; 无人工参与,整个人脸识别过程不需要用户或被检测人的主动参与,计算机可以根据用户预先的设置自动进行。由于具有以上优点,近几年来,人脸识别技术引起了越来越多科研人员的关注。关于人脸检测与识别算法的调研报告4人脸作为人的重要特征之一,包含着大量的信息,从而引起了科研工作者的兴趣,可以说是目前人们日常生活中最常用的身份确认手段。因为人们对人脸识别技术无排斥感,所以从实际操作上来讲,人脸识别可接受程度好,可作为最基本的身份验证技术进行推广。人脸识别也在其它诸多领域里有着巨大的应用价值。人脸识别主要包含两个步骤:(1)人脸检测步骤对待检测图像进行处理,用来定位人脸信息的过程,检测结果对检测之后的识别工作冇着重要的影响,也是构建人脸识别系统的第一步。(2)人脸识别就是将上一步检测出的人脸,与人脸库中的人脸进行比较,出同一个人的人脸的过程。1. 2 人脸检测与识别技术发展状况人脸检测与识别技术发展状况1.2.1 人脸检测技术发展状况人脸检测技术发展状况人脸识别起源于上世纪 60、70 年代,经过众多科学工作者的努力已日趋成熟2,3。其中,人脸检测技术是智能人脸识别系统中的关键的环节和前提条件,也是面部表情识别、头部状态估计等应用的前提条件。关于人脸检测与识别算法的调研报告5一个完善的智能人脸识别系统需要能够应对大自然环境中各种光照条件下的复杂图像,由此应用要求引发的问题,使得对人脸检测技术的探索渐渐地成为一个单独的研究方向,并受到越来越多的关注,相关的应用也得到了扩展。人脸检测一般可以分为两类:一类是基于静止图像的,通过判断在图像中人脸的存在性,如存在则将人脸部分在图像中圈出;另一类基于视频图像,通过判断人脸图像在视频中的情况来进行检测,如包含人脸区域就将此区域标记。后一种要比前一种难度更高,因为它对算法实的时性有较高的要求。另外,根据人脸检测所处理的图像的类别,可以将相关技术分为两种类别进行区分检测。(1)基于彩色图像的人脸检测方法,由于彩色图像能够提供丰富的信息,因此可以利用彩色图像的自身特征进行检测。一般步骤为先用肤色检测将肤色区域蹄选出来。然后在所选区域内进行进一步的脸部特征的识别,也存只用肤色进行人脸检测的。(2)基于灰度图像的人脸检测方法,目前主要分为三个类别:人脸特征识别法,人脸外貌识别和人脸模板匹配法。关于人脸检测与识别算法的调研报告6目前,国外对人脸检测问题的研究机构很多,比较著名的有MIT,CMU 等;浙江大学、清华大学、中科院自计算所等都有人脸检测相关的研究。而且,有的组织已经成立了人脸识别草案小组,比如 MPEG7 的标准组织。人脸检测的方法种类繁多,总的来说可分为统计法和物理几何特征法。统计法目前相对流行,主要有子空间法(PCA、ICA)、神经网络法、SVM 方法等。Li4,5的研究组继承并发展了 Viola5等的AdaBoost 方法,并将该方法用于其他方面的检测,比如多视角的人脸检测,以上研究代表了目前人脸检测研究的最高水平。甚于几何特征的优点是算法简单、检测速度快,但是缺点是会受背景影响比较大。1.2.21.2.2 人脸识别技术的发展现状人脸识别技术的发展现状国内对人脸识别技术的研究起步较晚,始于上世纪 80 年代,近 30 年的研究中,也取得了一系列的研究成果。国内自上世纪 90 年代以来,在国家自然科学基金和 863 计划等资助下,清华大学(电子系、自动化系和计算机系)、哈尔滨工业大学计算机系、中科院(计算所、自动化所)、南京理工大学、上海交通大学等很多单位展开了人脸识别技术研究,北京工业大学(信号与信息处理研究室)也在人关于人脸检测与识别算法的调研报告7脸检测方面取得了较好的研究成果。国内已经举行过数届生物识别学术会议,都取得了很好的成果,而且大大推动人脸识别研究的发展。中科院的模式识别重点实验室,专门对模式识别方面进行研究,在国内模式识别领域取得了很多很好的成果。但是,目前国内的研究水平仍低于国际水平,许多核心技术被国外大公司所掌握。国内更需要在人脸识别技术中多多投入研究6。 国内的研究工作主要是集中在三大类方法的研究:基于几何特征的人脸正面自动识别方法、基于代数特征的人脸正面自动识别方法和基于连接机制的人脸正面自动识别方法。目前,国内人脸识别已有的应用有: 2005 年,公安部出入境管理局实施“深圳香港生物护照旅客快速通关系统”采用人脸识别系统,每名旅客过关时间只需约 6 秒,识别率达到 99%。 2006 年,人脸识别系统在国内金融部门的金库开始使用,使其成为国内首个用人脸来“把守”大门的金库。运行以来,工作稳定可靠,经受了实际应用的检验。 2008 年,北京奥运会开闭幕式入场券实行实名制管理,要求入场券持有者提交个人信息和身份照片,并利用人脸识别进行门票实关于人脸检测与识别算法的调研报告8名制身份验证,目的在于消除潜在的安防漏洞,提高奥运安全防范和科技反恐水平。 当前很多国家展开了有关人脸识别的研究,主要有美国、欧洲国家、日本等著名的研究机构有美国 MIT 的 Media lab,AI lab,CMU 的 Human-Computer Interface Institute,Microsoft Research,英国的 Department of Engineering in University of Cambridge 等。 20 世纪 90 年代以来,随着高速高性能计算机的出现,人脸识别方法有了重大突破,进入了真正的机器自动识别阶段。国外有许多大学在此方面取得了很大进展,他们研究涉及的领域很广,其中有从感知和心理学角度探索人类识别人脸机理的,如美国 Texas at Dallas 大学的 Abdi 和 Toole 小组,主要研究人类感知人脸的规律;由 Stirling 大学的 Bruce 教授和 Glasgow 大学的 Burton 教授合作领导的小组,主要是研究人类大脑在人脸认知中的作用,并在此基础上建立了人脸认知的两大功能模型,他们对熟悉和陌生人脸的识别规律以及图像序列的人脸识别规律也进行了研究;也有从视觉机理角度进行研究的,英国 Aberdeen 大学的 Craw 小组,主要研究人脸视觉表征方法,他们对空间频率在人脸识别中的作用也进行了分关于人脸检测与识别算法的调研报告9析;荷兰 Groningen 大学的 Petkov 小组,主要研究人类视觉系统的神经生理学机理并在此基础上发展了并行模式识别方法。更多的学者则从事利用输入图像进行计算机人脸识别的研究工作7。早期的人脸识别技术主要都是基于运用人脸的物理几何特征或是运用模板匹配,基于物理几何特征的方法利用几何参数作为特征进行识别,如面部特征点的大小、位置、距离、角度和形状等6,7,具体来说可以根据眼睛相对于眉毛的位置坐标及宽度、脸的宽度与嘴巴的宽度的关系等来识别人脸。基于模板匹配的思想,经过多年研究,形成了如下几个主流研究方向:子空间方法8,9、弹性匹配方法10,11、神经网络法12,13、HMM 方法14,15以及支持向量机的方法16,17等。1.3 人脸识别的优点及技术难点人脸识别的优点及技术难点在模式识别与计算机视觉领域,人脸图像具有非常复杂的细节变化,其相关运动变化也为非刚体的形式,正是由于人脸运动的非刚性、非线性等方面的特征使对人脸的识别和检测存很高的挑战性,现在关于人脸检测和识别的算法大都没办法达到在任何自然条件下均可对人脸图像进行检测与识别的地步。总之,人脸识別技术的优点及难点主要有以下几种:关于人脸检测与识别算法的调研报告10(1)技术优势:人脸识别的采集过程需要行为配合较少,基本不需要辅助操作,甚至可以在一些不希望被人觉察的环境下来使用;在识别技术特有的条件下,可以使用更方便的远距离采集法,不需要触碰人体,不对被测物造成任何损伤,无察觉的情况下即可完成;可以更直观、更方便地核查人的身份,充分利用人脸数据库中的已有资源可以降低成本;(2)人脸识别技术面临的研究难点:人脸识别受到周围环境特别是自然光照条件的影响较大,如光源的强弱、光源的方向、光的色彩等。这些不确定因素会使被采集到的人脸图像具有较大的可变性,从而影响检测和识别效果;人脸模式的具有可变性,人脸姿态的可变性和面部非刚体变化决定了人脸模式的复杂性,人脸可能以不同视角出现在图像中,为了实现检测具有更好的鲁棒性,需要考虑人脸在各种复杂的背景中,不同方向、角度、尺度、表情等情况下所呈现出来的不同表象。在关于人脸检测与识别算法的调研报告11识别方面,人脸模式的可变性导致了难以提取足够多的用于分类的不变性特征;由于人脸自身的因素,不同的人脸在形状、质地、颜色、大小等方面都有很大的变动性,人脸上有一些具有随机性的部位(比如发型、胡须、眼镜等),也有可能被一些物体挡住,造成了某些提取的用于检测的人脸特征不能被提取,同时人脸还存在着不同的表情,还有一定的时间间隔内产生的人脸的变动等,以上这些都给人脸识别带来了难度;人脸的差异性并不是很明显,误识别率可能比较高,尤其是对于双胞胎,人脸识别技术难以进行区分;2 人脸检测与识别技术
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号