资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
22.3 实际问题与二次函数(2),创设情境 明确目标,自主学习 指向目标,学习目标,2.会运用二次函数知识解决其他简单的实际问题.,1.会建立恰当的平面直角坐标系,构建二次函数模型,解决抛物线拱桥问题,合作探究 达成目标,探究点一 用二次函数解决拱桥类问题,探究3:图中是抛物线形拱桥,当水面在 时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?,我们来比较一下,(0,0),(4,0),(2,2),(-2,-2),(2,-2),(0,0),(-2,0),(2,0),(0,2),(-4,0),(0,0),(-2,2),谁最合适,y,y,y,y,o,o,o,o,x,x,x,x,合作探究 达成目标,解法一: 如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.,可设这条抛物线所表示的二次函数的解析式为:,当拱桥离水面2m时,水面宽4m,即抛物线过点(2,-2),这条抛物线所表示的二次函数为:,合作探究 达成目标,当水面下降1m时,水面的纵坐标为y=-3,这时有:,当水面下降1m时,水面宽度增加了,合作探究 达成目标,解法二: 如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.,可设这条抛物线所表示的 二次函数的解析式为:,此时,抛物线的顶点为(0,2),合作探究 达成目标,当拱桥离水面2m时,水面宽4m,即:抛物线过点(2,0),这条抛物线所表示的二次函数为:,当水面下降1m时,水面的纵坐标为y=-1,这时有:,当水面下降1m时,水面宽度增加了,合作探究 达成目标,解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.,可设这条抛物线所表示的二次函数的解析式为:,抛物线过点(0,0),这条抛物线所表示的二次函数为:,此时,抛物线的顶点为(2,2),合作探究 达成目标,当水面下降1m时,水面的纵坐标为y=-1,这时有:,当水面下降1m时,水面宽度增加了,这时水面的宽度为:,合作探究 达成目标,1.理解问题;,回顾上一节“最大利润”和本节“桥梁建筑”解决问题的过程,你能总结一下解决此类问题的基本思路吗?,2.分析问题中的变量和常量,以及它们之间的关系,3.用数学的方式表示出它们之间的关系;,4.用数学求解;,5.检验结果的合理性,“二次函数应用”的思路,合作探究 达成目标,针对练一,1.某涵洞是抛物线形,它的截面如图所示,现测得水面宽16m,涵洞顶点O到水面的距离为24m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是_. 2.在上题中,若水面下降,宽度变为2米,此时水面离涵洞顶点的距离为_米。,合作探究 达成目标,探究点二 用二次函数解决生活中的实际问题,例:飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t-1.5t2 ,飞机着陆后滑行多少秒才能停下来?,思考:飞机从着陆的一瞬间开始计时,到滑行到最远距离停下来所用的时间即为所求,也就是使S取得什么值时的t的值?,解: s=60t-1.5t2=-1.5(t-20)2+600当t=20时,s最大,此时飞机才能停下来。,抽象,转化,数学问题,运用,数学知识,问题的解决,解题步骤: 1.分析题意,把实际问题转化为数学问题,画出图形. 2.根据已知条件建立适当的平面直角坐标系. 3.选用适当的解析式求解. 4.根据二次函数的解析式解决具体的实际问题.,实际问题,合作探究 达成目标,探究点二 用二次函数解决生活中的实际问题,针对练二,600,飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t-1.5t2 ,飞机着陆后滑行_m才能停下来.,总结梳理 内化目标,达标检测 反思目标,D,B,y=-2x2,达标检测 反思目标,102,上交作业:教科书第42页第11.12题 课后作业:“学生用书”的“课后作业”部分,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号