资源预览内容
第1页 / 共114页
第2页 / 共114页
第3页 / 共114页
第4页 / 共114页
第5页 / 共114页
第6页 / 共114页
第7页 / 共114页
第8页 / 共114页
第9页 / 共114页
第10页 / 共114页
亲,该文档总共114页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
时域测量 示波器,时域测量仪器,时域测量仪器:观察和测试信号的时域波形、测量脉冲的占空比、上升沿、下降沿、上冲等示波器;测量信号的电压、电流及功率电压表、电流表及功率计;测量电信号的频率、周期、相位及时间间隔通用电子计数器、频率计、相位计等;,从物理学家到电视维修人员,各种人士都使用示波器。汽车工程师使用示波器来测量发动机的振动。医师使用示波器测量脑电波。描述示波器的用途是没有止境的。,示波器本质上是一种图形显示设备,它描绘电信号的图形曲线。在大多数应用中,呈现的图形能够表明信号随时间的变化过程: 垂直(Y)轴表示电压,水平(X)轴表示时间。有时称亮度为Z 轴。,概述,波的类型,波型 正弦波 方波和矩形波 三角波和锯齿波 复杂波性质 阶跃波和脉冲波 周期和非周期信号 同步和异步信号,幅度: 最小值 最大值 峰值-峰值 均方值 周期均方值 均值 周期均值 过冲 过冲 时间: 延迟 宽度 宽度 上升时间 下降时间 周期 频率 占空比 占空比 组合:相位 突发宽度,示波器可测量参数,现代的数字示波器使波形测量变得更为容易。通过前面板按钮,以及基于屏幕的菜单,方便选择全自动的测量参数。许多数字仪器也能提供均值和均方值的计算、占空比和其他数学运算。自动化测量通过屏幕读取数值。一般来说,读取的数值可能比直接利用有刻度的工具更为准确。,示波器的发展(一),第一代模拟示波器(ART-Analog Real Time Oscilloscope) 20世纪40年代电子示波器兴起的时代; 20世纪60年代出现了带宽6GHz的取样示波器; 20世纪70年代模拟式电子示波器达到高峰,带宽1GHz的多功能插件式示波器标志着当时科学技术的最高水平,模拟示波器从此没有更大的进展; 20世纪80年代模拟示波器逐渐从前台退到后台。,示波器的发展(二),第二代数字存储示波器(DSO Digital Storage Oscilloscope)1978年出现了数字储存示波器,它是公的第二代示波器产品; 进入90年代数字示波器除了提高带宽到1GHz以上,更重要的是它的全面性能超越模拟示波器。,示波器的发展(三),第三代数字荧光示波器(DPO Digital Phosphor Oscilloscope ) DPO是以数字荧光技术为核心的第三代示波器,数字荧光示波器在技术上已经把前两代示波器产品数字模拟示波器和数字存储示波器的优点集中到一起,实现了所谓数字示波器模拟化,使数字示波器得到了更为广泛的应用。,模拟示波器,模拟示波器的组成及原理,CRT显示原理,CRT主要由电子枪、偏转系统和荧光屏三部分组成,基本结构如下图所示。,CRT 限制着模拟示波器显示的频率范围。在频率非常低的地方,信号呈现出明亮而缓慢移动的点,而很难分辨出波形。在高频处,起局限作用的是CRT的写速度。当信号频率超过CRT的写速度时,显示出来的过于暗淡,难于观察。模拟示波器的极限频率约为1GHz。,灯丝,阴极,栅极,阳极,偏转系统,示波管的偏转系统由两对相互垂直的平行金属板组成,分别称为垂直偏转板和水平偏转板 。 当有外加电压作用时,偏转板之间形成电场;在偏转电场作用下,电子束打向由X、Y偏转板共同决定的荧光屏上的某个坐标位置。 电子束在偏转电场作用下的偏转距离与外加偏转电压成正比:示波管的Y轴偏转灵敏度(单位为cm/V):其倒数为示波管的Y轴偏转因数。偏转灵敏度越大,示波管越灵敏。,l为偏转板的长度;S为偏转板中心到屏幕中心的距离;b为偏转板间距;Va为阳极A2上的电压。,荧光屏,荧光屏将电信号变为光信号,是示波管的波形显示部分 。 在使用示波器时,应避免电子束长时间的停留在荧光屏的一个位置,否则将使荧光屏受损。因此在示波器开启后不使用的时间内,可将“辉度”调暗。 当电子束停止轰击荧光屏时,光点仍能保持一定的时间,这种现象称为“余辉效应”。,波形显示的基本原理(一),1.显示随时间变化的图形 (1)Ux、Uy为固定电压时,有下面四种情况:,光点出现在荧光屏的中心位置。,光点仅在垂直方向偏移 :Uy为正电压时,光点从荧光屏的中心往垂直方向上移;Uy为负电压时,光点从荧光屏的中心往垂直方向下移。,光点仅在水平方向偏移 :Ux为正电压时,光点从荧光屏的中心往水平方向右移;Ux为负电压时,光点从荧光屏的中心往水平方向左移。,当两对偏转板上同时加固定的正电压时,光点位置应为两电压的矢量合成。,(2)X、Y偏转板上分别加变化电压,有下面两种情况:,仅在垂直偏转板的两板间加正弦变化的电压,则光点只在荧光屏的垂直方向来回移动,出现一条垂直线段。,仅在水平偏转板的两板间加锯齿电压,则光点只在荧光屏的水平方向来回移动,出现一条水平线段。,(3)Y偏转板加正弦波信号电压,X偏转板加锯齿波电压,荧光屏上将显示出被测信号随时间变化的一个周期的波形曲线。,2显示任意两个变量之间的关系示波器两个偏转板上都加正弦电压时显示的图形称为: 李沙育(Lissajous)图形利用这种图形可对:相位频率进行测量!,波形显示的基本原理(二),若两同频信号的初相相同,且在X、Y方向的偏转距离相同,在荧光屏上画出一条与水平轴呈45度角的直线。,相位测量,若两同频信号的初相相差90度,且在X、Y方向的偏转距离相同,在荧光屏上画出的图形为圆。,若两同频信号的初相不同,且在X、Y方向的偏转距离相同数字式(分别送入示波器的Y通道和X通道,使示波器工作在X-Y方式),在荧光屏上画出的图形为椭圆。,示波器工作于X-Y方式下,将频率已知的信号与频率未知的信号加到示波器的两个输入端,调节已知信号的频率,使荧光屏上得到李沙育图形,由此可测出被测信号的频率。和 分别为水平线、垂直线与李沙育图形的交点数; 、 分别为示波器Y和X信号的频率。李沙育图形存在关系:,测量频率,最大交点数,例 如图所示的李沙育图形,已知X信号频率为6MHz,问Y信号的频率是多少?,MHz,李沙育图形频率与相位,扫描光点在锯齿波作用下扫动的过程称为“扫描”,能实现扫描的锯齿波电压称为扫描电压,光点自左向右的连续扫动称为“扫描正程”,自荧光屏的右端迅速返回左端起扫点的过程称为“扫描逆程”。 连续扫描和触发扫描当欲观测脉冲信号,尤其是占空比很小的脉冲时,采用连续扫描存在一些问题:选择扫描周期等于脉冲重复周期时,难以看清脉冲波形的细节。选择扫描周期等于脉冲底宽时,观测者不易观察波形,而且扫描的同步很难实现。,波形显示中的几个概念(一),触发扫描 触发扫描时,使扫描脉冲只在被测脉冲到来时才扫描一次;没有被测脉冲时,扫描发生器处于等待工作状态。,同步 (1)Tx=nTy(n为正整数):荧光屏上将稳定显示n个周期的被测信号波形。,n=2,如果扫描电压周期Tx与被测电压周期Ty保持Tx=nTy的关系,则称扫描电压与被测电压“同步”。,波形显示中的几个概念(一),(2)TxnTy(n为正整数),即不满足同步关系时,显示的波形不稳定。,数字示波器,数字示波器通过模数转换器(ADC)把被测电压转换为数字信息。它捕获的是波形的一系列样值,并对样值进行存储,随后,数字示波器重构波形。,数字的手段则意味着,在示波器的显示范围内,可以稳定、明亮和清晰地显示任何频率(示波器带宽内)的波形。,数字示波器分为数字存储示波器(DSO) 数字荧光示波器(DPO) 采样示波器,数字存储示波器(DSO),数字存储示波器(DSO Digital Storage Oscilloscopes) )是最常规的数字示波器 数字存储示波器(DSO)便于您捕获和显示那些可能只发生一次的事件,通常称为瞬态现象。以数字形式表示波形信息,实际存储的是二进制序列。这样,利用示波器本身或外部计算机,方便进行分析、存档、打印和其他的处理。波形没有必要是连续的;即使信号已经消失,仍能够显示出来。与模拟示波器不同的是,数字存储示波器能够持久地保留信号,可以扩展波形处理方式。然而,DSO没有实时的亮度级;因此,他们不能表示实际信号中不同的亮度等级。 组成DSO的一些子系统与模拟示波器的一些部分相似。但是,DSO包含更多的数据处理子系统,因此它能够收集显示整个波形的数据。从捕获信号到在屏幕上显示波形,DSO采用串行的处理体系结构。,DSO结构及工作原理,串行处理体系结构 与模拟示波器一样,DSO 第一部分(输入)是垂直放大器。在这一阶段,垂直控制系统方便您调整幅度和位置范围。紧接着,在水平系统的模数转换器(ADC)部分,信号实时在离散点采样,采样位置的信号电压转换为数字值,这些数字值称为采样点。该处理过程称为信号数字化。水平系统的采样时钟决定ADC采样的频率。该速率称为采样速率,表示为样值每秒(S/s)。,数字存储示波器顺序处理体系结构,来自ADC的采样点存储在捕获存储区内,叫做波形点。几个采样点可以组成一个波形点。波形点共同组成一条波形记录。创建一条波形记录的波形点的数量称为记录长度。触发系统决定记录的起始和终止点。 DSO信号通道中包括微处理器,被测信号在显示之前要通过微处理器处理。微处理器处理信号,调整显示运行,管理前面板调节装置,等等。信号通过显存,最后显示到示波器屏幕中在示波器的能力范围之内,采样点会经过补充处理,显示效果得到增强。可以增加预触发,使在触发点之前也能观察到结果。目前大多数数字示波器也提供自动参数测量,使测量过程得到简化。,DSO技术的发展,在取样率上大大提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1GHz的取样率就是5GHz/s,甚至10GHz/s; DSO波形更新率得到很大提高,使观察偶发信号和捕捉毛刺脉冲的能力大为增强; 采用多处理器加快信号处理能力,从多重菜单的烦琐测量参数调节,改进为简单的旋钮调节,甚至完全自动测量,使用上与模拟示波器同样方便。,DSO的特点,(1)波形的采样/存储与波形的显示是独立的因而可以无闪烁地观测极慢变化信号;对于观测极快信号来说,数字存储示波器可采用低速显示。 (2)能长时间地保存信号便于观察单次出现的瞬变信号。 (3)先进的触发功能不仅能显示触发后的信号,而且能显示触发前的信号。 (4)测量准确度高采用了晶振和高分辨率A/D转换器。 (5)很强的数据处理能力内含微处理器,能自动实现多种波形参数的测量与显示;还具有自检与自校等多种自动操作功能。 (6)外部数据通信接口可以很方便地将存储的数据送到计算机或其他的外部设备,进行更复杂的数据运算和分析处理。,数字荧光示波器(DPO),DSO (Digital phosphor Oscilloscopes )使用串行处理的体协结构来捕获、显示和分析信号;相对而言,DPO为完成这些功能采纳的是并行的体系结构。DPO采用ASIC硬件构架捕获波形图象,提供高速率的波形采集率,信号的可视化程度很高。它增加了证明数字系统中的瞬态事件的可能性。,模拟、DSO、DPO的比较,模拟示波器的缺点,在显示方面:由于没有存储功能,无法观测单次信号,对于低频信号往往只能显示一个移动的亮点; 触发方面:模拟示波器只有电平触发,而没有预触发和其它高级触发方式,这对于系统中多种异常信号是捕获不到的,并且不能看见事件发生前的信号情况; 在测量方面:模拟示波器必须依赖屏幕上的刻度尺采用人工方式进行,会引进较大的人为误差; 在扩大带宽方面:高频的模拟示波器的制作难度集中到CRT上,100M带宽以上的CRT其成本急剧提高,1GHz频宽的模拟示波器的一半以上成本来自CRT,其成本比目前3GHz频宽的数字示波器还高。,模拟示波器与DSO相比的优点(一),操作简单:全部操作都在面板上可以找到,波形反应及时;垂直分辨率:模拟示波器连续而且无限级,DSO分辨率一般只有8位至10位;数据更新快:模拟示波器从信号采集一直到在CRT上显示出波形都是纯粹的模拟通道,仅仅在扫描的回扫时间及闭锁Hold off时间内不采样信号,因此可以有很好的波形刷新率,一般在200,000次/秒左右,DSO由于进行A/D转换后要进行一系列的信号处理,因此有几个毫秒级的盲区,在这个盲区内出现的异常信号将被漏失;,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号