资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
数学史论文,数学家阿基米德,概述,阿基米德(公元前287年公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德是螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。,中文名:阿基米德 别名:力学之父 职业:哲学家、数学家、物理学家 主要成就:几何体的表面积和体积的计算方法 代表作品:论球和圆柱、论螺线、沙的计算、论图形的平衡。,关于浮力原理,有这样一个的传说。 相传叙拉古赫农王让工匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了假,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。 后来,国王请阿基米德来检验。最初,阿基米德也是冥思苦想而不得要领。一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起。他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重。他兴奋地跳出澡盆,连衣服都顾不得跑了出去,大声喊着“尤里卡!尤里卡!”。 他经过了进一步的实验以后来到王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,密度不相同。所以证明了王冠里掺进了其他金属。 这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于他所排出液体的重量。一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等。,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球。”,当代数学大师,对于阿基米德来说,机械和物理的研究发明还只是次要的,他比较有兴趣而且 投注更多时间的是纯理论上的研究,尤其是在数学和天文方面。在数学方面,他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。他更研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在恒河沙数一书中,他创造了一套记大数的方法,简化了记数的方式。,天文研究,他曾运用水力制作一座天象仪,球面上有日、月、星辰、五大行星,根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。晚年的阿基米德开始怀疑地球中心学说,并猜想地球有可能绕太阳转动,这个观念一直到哥白尼时代才被人们提出来讨论。,个人著述,作为数学家,他写出了论球和圆柱、圆的度量、抛物线求积、论螺线、论锥体和球体、沙的计算等数学著作。 作为力学家,他着有论图形的平衡、论浮体、论杠杆、原理等力学著作。,几何学方面 阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。,重视实践 阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的投石车等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。,阿基米德螺旋永动机 。,阿基米德设计的永动机被称为阿基米德螺旋汲水器,它的原理是:先靠人力把汲水器最上面的水槽装满水,水从水槽中流出带动汲水器外面的一个个轮叶,使汲水器转达动。汲水器将水再吸到上面的水槽中,这样螺旋汲水器就可以不停地运转了。 细心的读者可能会发现,尽管这一装置巧妙地利用了水的势能与水和汲水器的动能之间的互相转化,然而摩擦损耗是必定存在的,损耗的机械能,将转化为热能,汲水器不可能永远转动。 要是阿基米德懂得能的转化和守恒定律的话,他就不会把宝贵的时间浪费在永动机的发明上了。,因为他的杰出贡献,美国的E.T.贝尔在数学人物上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。,研究者们将“阿基米德羊皮书”一页页拆开,利用各种现代的成像技术,最终竟然成功地完整重现了那份在700多年前已经被从羊皮纸上刮去的抄本内容。于是传世阿基米德著作的第三个抄本重新出现了。它现在被称为“抄本C”,成为存世的阿基米德著作抄本中最古老的版版本。 “抄本C”中包括了阿基米德的7篇著作:论平面平衡、球体和圆柱体、测圆术、论螺线、论浮体、方法论、十四巧板。其中前五篇是以前“抄本A”和“抄本B”系统已经承传下来,为世人所知的;而最为珍贵的是最后两篇,即方法论和十四巧板,这是以前从未出现过的。,“阿基米德羊皮书”提供的方法论和十四巧板这两篇阿基米德遗作的重新问世,确实可以说是“改写了科学史”。,名言 “给我一个支点,我能撬动整个地球。” 首先,要在地球上举起与地球等重量的物体要6*1022的力,若他能用的最大力为600N,哪根据杠杆平衡条件,动力臂要是阻力臂的1022倍。而即使有这样长的杠杆,在茫茫宇宙中,也不会有相对于地球静止的固定支点,应为太阳系中的星体无时无刻不在运动着。而即使找到这样的支点,哪怕只是撬动地球1mm,他在宇宙中所画过的圆弧也会达到1017km(约10000光年),这够他玩一辈子的了。所以到现在为止也不可能只要在宇宙中给他一个支点,他就能把地球撬起来。但如果你能找到方法一定会轰动世界 。,Thank you!,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号