资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
ks5u精品课件,2.2 用样本估计总体,.2.2用样本的数字特征估计总体的 数字特征,第二课时,ks5u精品课件,知识回顾,1.如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数?,(1)众数:最高矩形下端中点的横坐标.,(2)中位数:直方图面积平分线与横轴交点的横坐标.,(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和.,ks5u精品课件,2.对于样本数据x1,x2,xn,其标准差如何计算?,ks5u精品课件,样本数字特征例题分析,ks5u精品课件,知识补充,1.标准差的平方 称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.,2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.,ks5u精品课件,3.对于城市居民月均用水量样本数据,其平均数 ,标准差s=0.868. 在这100个数据中, 落在区间( -s, +s)=1.105,2.841外的有28个; 落在区间( -2s, +2s)=0.237,3.709外的只有4个; 落在区间( -3s, +3s)=-0.631,4.577外的有0个.,ks5u精品课件,一般地,对于一个正态总体,数据落在区间( -s, +s)、 ( -2s, +2s)、( -3s, +3s)内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”).,ks5u精品课件,例题分析,例1 画出下列四组样本数据的条形图, 说明他们的异同点. (1) ,; (2) ,;,ks5u精品课件,(3) ,; (4) ,.,ks5u精品课件,例2 甲、乙两人同时生产内径为25.40mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取20件,量得其内径尺寸如下(单位:mm):,甲 : 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39,乙: 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 25.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48,从生产零件内径的尺寸看,谁生产的零件质量较高?,ks5u精品课件,甲生产的零件内径更接近内径标准,且稳定程度较高,故甲生产的零件质量较高.,说明:1.生产质量可以从总体的平均数与标准差两个角度来衡量,但甲、乙两个总体的平均数与标准差都是不知道的,我们就用样本的平均数与标准差估计总体的平均数与标准差.2.问题中25.40mm是内径的标准值,而不是总体的平均数.,ks5u精品课件,例3 以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?,要点:(1)查往年录取的新生的平均分数.若平均数小于中位数很多,说明最低录取线较低,可以报考; (2)查往年录取的新生高考总分的标准差.若标准差较大,说明新生的录取分数较分散,最低录取线可能较低,可以考虑报考.,ks5u精品课件,例4 在今年的足球超级联赛中,甲队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4.你认为下列说法是否正确,为什么? (1)平均来说甲队比乙队防守技术好; (2)乙队比甲队技术水平更稳定; (3)甲队有时表现很差,有时表现又非常 好; (4)乙队很少不失球.,ks5u精品课件,例5 有20种不同的零食,它们的热量含量如下: 110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140,(1)以上20个数据组成总体,求总体平均数与总体标准差; (2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.,ks5u精品课件,(1)总体平均数为199.75,总体标准差为95.26.,(1)以上20个数据组成总体,求总体平均数与总体标准差; (2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.,(2)可以用抽签法抽取样本,样本的平均数和标准差与抽取的样本有关.,ks5u精品课件,小结作业,1.对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.,ks5u精品课件,2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.,ks5u精品课件,3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.,作业: P82习题2.2 A组:5,6.B组:1.,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号