资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高考资源网(ks5u.com) 您身边的高考专家www.ks5u.com重庆大一中18-19学年上期高2020届第一次月考试题 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1以下命题:以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆;一个平面截圆锥,得到一个圆锥和一个圆台其中正确命题的个数为() 2下列说法中正确的是 有一条侧棱垂直于底面的棱柱是直棱柱 在正三棱锥中,斜高大于侧棱 底面是正方形的棱锥是正四棱锥 有一个面是多边形,其余各面均为三角形的几何体是棱锥3已知底面半径为 的圆锥的体积为 ,则圆锥的高为( ) 4已知某几何体的三视图如图所示,则该几何体的体积为 5某几何体的三视图如图所示,则该几何体的表面积为( ) 6已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为( ) 7设是两条不同的直线,是两个不同的平面,下列命题中正确的是() 若 若 若 若8下列命题为真命题的是( )A 平行于同一平面的两条直线平行; B 与某一平面成等角的两条直线平行;C 垂直于同一平面的两条直线平行; D 垂直于同一直线的两条直线平行。9如图,在正方体中,点在线段上运动,则下列判断中不正确的是 ( ).与所成角的范围是 三棱锥的体积不变10在四面体中,已知是边长为2的等边三角形,那么点到底面的距离是( ) 1 2 311如图在三棱锥中,则三棱锥的外接球的表面积为 ( ) 12在棱长为的正方体中,点分别是棱的中点,是侧面内一点,若,则线段长度的取值范围是( ) 二、填空题:本大题共四个小题,每个小题5分13长方体一顶点出发的三个侧面的面对角线的长分别为,则该长方体外接球的表面积是_14已知正方体的棱长为1,则四棱锥的体积为_ 15已知是平面,是直线,给出下列命题:若;若;如果是异面直线,则与相交;若其中正确确命题的序号是_(把正确命题的序号都填上)16如图,正方体的棱长为,为的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是_(写出所有正确命题的编号)当时,为四边形;当时,为等腰梯形;当时,与的交点满足;存在点,为六边形.三、解答题:本大题共6个小题,17题共10分,18-22小题每题12分17如图,在四棱锥中,.四边形为正方形,且为的中点,为的中点.(1)求证:;(2)求证:.18如图,在三棱柱中,.(1)证明:;(2)若,求三棱柱的体积.19在三棱锥中和是边长为的等边三角形分别是的中点.(1)求证平面(2)求证平面(3)求三棱锥的体积.20如图,三棱柱中,侧面 侧面, , ,为棱的中点,为的中点.(1) 求证:;(2) 若,求三棱柱的体积.21如图,在四面体中,截面是平行四边形.(1)求证:;(1) (2)若截面是正方形,求异面直线与所成的角.22三棱锥中,侧面底面, 是等腰直角三角形的斜边,且.(1)求证: ;(2)已知平面平面,平面平面, ,且到平面的距离相等,试确定直线及点的位置(说明作法及理由),并求三棱锥的体积.参考答案1B【解析】【分析】由题意逐一分析所给命题的真假即可.【详解】逐一分析所给命题的真假:以直角三角形的一条直角边为轴旋转一周所得的旋转体是圆锥,题中的命题错误;以直角梯形的直角边所在的腰为轴旋转一周所得的旋转体是圆台,题中的命题错误;圆柱、圆锥、圆台的底面都是圆,题中的命题正确;一个平行于底面的平面截圆锥,得到一个圆锥和一个圆台,题中的命题错误综上可得:正确命题的个数为1.本题选择B选项.【点睛】本题主要考查旋转体的定义与性质及其应用,意在考查学生的转化能力和计算求解能力.2A【解析】在正三棱锥中,斜高小于侧棱;有一条侧棱垂直于底面的棱柱是直棱柱;底面是正方形的直棱锥才是正四棱锥;有一个面是多边形,其余各面均为三角形的几何体不一定是棱锥,所以正确的是A.3C【解析】设圆锥的高为,由体积公式可得:,求解关于高度的方程可得: .本题选择C选项.4D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为,底为一个直角三角形,直角边分别为,所以体积为,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析5C【解析】【分析】由三视图还原可知原图形为三棱锥,再分别求得表面四个三角形的面积。【详解】由三视图还原可知原图形为三棱锥,如下图,作,取AB中点F,所以,可求得,所以表面积为。选C.,【点睛】几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线符合长对正,高平齐,宽相等,所以主视图与俯视图的长相等,侧视图的高与主视图的高一样,俯视图的宽与侧视图的相等。6C【解析】【分析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,由此可得结论【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选【点睛】本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题。7B【解析】【分析】由已知条件,利用直线与直线、直线与平面、平面与平面的位置关系,能求出结果【详解】若,m,n,则m与n相交、平行或异面,故A错误;m,mn,n,又n,故B正确;若mn,m,n,则或与相交,故C错误;若,m,n,则mn或m,n异面,故D错误故选:B【点睛】本题考查直线与直线、直线与平面、平面与平面的位置关系的判定,是基础题,解题时要注意空间思维能力的培养8C【解析】【分析】由题意逐一考查所给命题的真假即可.【详解】逐一考查所给的命题:平行于同一平面的两条直线可能平行,相交或异面,选项A说法错误;与某一平面成等角的两条直线可能平行,相交或异面,选项B说法错误;由线面垂直性质定理的推理可知垂直于同一平面的两条直线平行,选项C说法正确;垂直于同一直线的两条直线可能平行,相交或异面,选项D说法错误;本题选择C选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.9A【解析】分析: 利用正方形的性质和线面位置关系,以及三棱锥的体积转化等知识点,逐一判定,即可得到答案.详解:对于A中,当点与线段的两端点重合时,与所成的角的最小值为,当点与线段的中点重合时,与所成的角的最小值为,故与所成的角的取值范围是,所以是错误的;B中,连接容易证明平面平面,从而由线面平行的定义可得平面,所以是正确的;C中,连接,根据正方体的性质,有平面,平面,从而可证得平面平面,所以是正确的;D中,因为,则到平面的距离不变,且三角形的面积不变,所以是正确的,综上可知,错误的应为A,故选A.点睛:本题主要考查了正方体的性质的应用,以及点线面的位置关系的判定与锥体的体积的应用等知识点的综合考查,解答中认真审题,把握好空间中的线面位置关系的判定是解答的关键,着重考查了空间思维能力,以及推理与论证能力.10B【解析】分析:先证明AC与平面ABD垂直,则只要在平面ABD内过D作AB的垂线DO与AB交于点O,则DO的长就是D到平面ABC的距离.详解:ABAC,ACBD,ABBDB,AC平面ABD,平面ABC平面ABD,取AB中点O,连接DO,ABD是等边三角形,DOAB,DO平面ABC,又DO,D到平面ABC的距离是.故选B.点睛:求点平面的距离,第一种方法是根据定义作出垂线段,然后只要通过解三角形求出这个线段的长即可,要注意这里有三个步骤:一作二证三算;第二种方法利用体积法计算,所求距离作为一个三棱锥的高,通过两种不同的方法求三棱锥的体积,然后求得这个高;第三咱方法是利用空间向量法,点到平面的距离就是此点到平面的任一斜线段在平面的法向量方向上的投影的绝对值.11A【解析】【分析】首先求得外接球半径,然后求解外接球的表面积即可.【详解】设CD的中点为,由余弦定理可得:,很明显为等腰三角形,则,据此有:,由勾股定理的逆定理可得:,很明显,以P为原点,PC为x轴正方向,PB为y轴正方向,PA为x轴正方向,建立如图所示的空间直角坐标系.易知,设球心坐标为,由OA=OB=OC=OD可得:,解得:,则外接球半径:,其表面积:.本题选择A选项.【点睛】与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12B【解析】分析:首先确定点P的轨迹,然后利用几何体的结构特征整理计算即可求得最终结果.详解:分别取棱BB1、B1C1的中点M、N,连接MN,M、N、E、F为所在棱的中点,MNBC1,EFBC1,MNEF.MN平面AEF,EF平面AEF,MN平面AEF.AA1NE,AA1=NE,四边形AENA1为平行四边形,A1NAE.A1N平面AEF,AE平面AEF,A1N平面AEF.A1NMN=N,平面A1MN平面AEF.P是侧面BCC1B1内一点,A1P平面AEF,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号