资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划ni基复合材料的性能,制备和应用金属基复合材料制备方法及应用摘要:金属基复合材料是以金属或合金为基体,并以纤维、晶须、颗粒等为增强体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、不老化和无污染等优点。按金属或合金基体的不同,金属基复合材料可分为铝基、镁基、铜基、钛基、高温合金基、金属间化合物基以及难熔金属基复合材料等。由于这类复合材料加工温度高、工艺复杂、界面反应控制困难、成本相对高,应用的成熟程度远不如树脂基复合材料,应用范围较小。但金属基复合材料除了和树脂基复合材料同样具有高强度、高模量外,它能耐高温,同时不燃、不吸潮、导热导电性好、抗辐射。是令人注目的复合材料。关键字:金属基复合材料制备方法应用1.复合材料的定义复合材料的定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料既可保持原材料的某些特点,又能发挥组合后的新特征,它可以根据需要进行设计,从而最合理地达到使用要求的性能。2.金属基复合材料的基本特点优点:高比强度和高比模量,耐高温性好,导电导热,热膨胀系数小,尺寸稳定性好,耐磨性与阻尼性好,不吸湿、不老化、无放气污染。缺点:制造困难,难于形成理想的界面,加工困难,价格昂贵。3.金属基复合材料的分类金属基复合材料按组织形态可分为宏观组合型和微观强化型两类;根据复合材料的基体不同可以分为刚基、铁基、铝基、镁基复合材料等;按增强相形态的不同可分为颗粒增强复合材料、晶须或短纤维金属复合材料及连续纤维增强金属基复合材。4.金属基复合材料制备工艺方法的分类由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料的复合工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。粉末冶金复合法粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法,烧结制坯加塑法加成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。该方法在铝基复台材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。原因有二方面:强化颗粒与熔体基本金属之间容易产生化学反应如4Al+3SiCAl4C3+3Si;强化颗粒不易均匀分散在铝合金一类的台金熔傩中。这是由于陶瓷颗粒与铝合盒的润醌性较差所致。另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选择强化颗粒的种类、尺寸,还可以多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。但缺点是:工艺复杂、成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料等。铸造凝固成型法铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。原生铸造复合法原生铸造复合法(也称液相接触反应合成技术,LiquidContactReaction:LCR)是将生产强化颗粒的原料加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。如TiB强化铝基复合材料原生复合法的化学反应是:2B+Ti+AlTiB2+AI。这种方法的特点是颗粒与基体材料之间的结合状态良好,颗牲细小(02515m)均匀弥散,含量可高达40,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备Al基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料。强化相可以是硼化物、碳化物、氯化物等。搅拌铸造法搅拌铸造法也称掺和铸造法,是在熔化金属中加人陶瓷颗粒,经均匀搅拌后浇入铸摸中获得制品或二次加工坯料,此法易于实现能大批量生产,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗粒的组合受限制。原因有两方面:1.强化颗粒与熔体基本金属之间容易产生化学反应,如:4Al+3SiCAl4C3+3Si;强化颗粒不易均匀分散在铝合金一类的合金熔体中,这是由于陶瓷颗粒与铝台金的润滑性较差。另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。半固态复合铸造法半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩于液相中,这种颗粒状非枝晶的微组织在固相率达0506仍具有一定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液中均匀分布,改善了润湿性并促进界面的结合。含浸凝固法含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金属之间润湿性很差的复合材料的制备。强化相含量可高达3080;强化相与熔融金属之间的反应得到抑止,不易产生偏折。但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大尺寸复合材(来自:写论文网:ni基复合材料的性能,制备和应用)料的制备较困难。离心铸造法广泛应用于空心件铸造成形的离心铸造法,可以通过两次铸造成型法成形双金属层状复合材料,此方法简单,具有成本低、铸件致密度高等优点,但是界面质量不易控制,难以形成连续长尺寸的复合材料。加压凝固铸造法该方法是将金属液浇注铸型后,加压使金属液在压力下凝固。金属从液态到凝固均处于高压下,故能充分浸渗,补缩并防止产生气孔得到致密铸件。铸、锻相结合的方法叉称挤压铸造、液态模锻、锻铸法等。此法最适合复杂的异型MMCs。加压凝固铸造法可制备较复杂金属基复合材料性能的影响因素摘要:金属基复合材料具有高比强度、高比模量、低热膨胀系数等优点,近年来发展非常迅速。但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。本文综述了基体、增强体、基体与增强体相容性、工艺、界面等因素对金属基复合材料性能的影响。关键词:金属基复合材料性能影响因素设计1引言金属基复合材料被誉为21世纪的材料,它兼有金属的塑性和韧性,以及其它材料如陶瓷的高强度和高刚度,而且比重小,因此具有较高的比强度、比刚度和更好的热稳定性、耐磨性以及尺寸稳定性等优点,从而在机械、汽车、航空航天、兵器、电子等许多领域得到了应用13。尽管金属基复合材料在过去的30年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍45。目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。这就涉及到复合材料的设计问题,而性能决定了复合材料在工程上的应用,所以性能的影响因素一直是研究的热点。但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。因此对复合材料性能的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。2影响金属基复合材料的因素基体的影响不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。但并不是基体强度越高,复合材料的强度越高,而是存在一个最佳匹配6。姜龙涛等7对AlN颗粒在不同铝合金中的增强行为的研究表明,在低强度的L3纯铝上可以得到最大的增强率,而在高强度的LY12合金上没有得到高的增强率,相比之下具有良好塑性和较高强度的LD2合金作为基体时,具有较高的强度。而康国政等8认为基体本身的强度较低时,复合材料中基体的强度将有较大幅度的提高,因此对基体本身强度较低的复合材料通过基体原位性能的大幅度提高使复合材料抗拉强度的提高十分明显。这些研究都说明基体同增强体之间存在着优化选择、合理匹配的问题。基体的合金化也对复合材料的强度有重要影响。Tsudo等9探讨过铝合金成分对Al2O3颗粒增强铝基复合材料力学性能的影响。他们的研究表明Cu和Ni加到铝合金中,高温时抗弯强度增加,增加Al的体积分数也能增加抗弯强度另外稀土元素的加入也能提高复合材料的强度,如稀土Ce的加入对基体起着强化作用10。但是稀土元素对复合材料具体的强化原因目前尚未有一致的结论。增强体的影响增强体的加入可以通过对基体金属的显微组织,如亚结构、位错组态、晶粒尺寸及材料密度等的改变,改善和弥补基体金属性能上的不足。增强体的性质对复合材料的强度起着至关重要的作用。加入增强体后,材料的抗拉强度和屈服强度都有所提高。增强体的主要贡献是通过基体合金的微观组织变化实现的,另外它是载荷的主要承受者,其次它对位错的产生,亚晶结构细化也起着重要的影响。例如SiCpAl复合材料由于增强颗粒的加入,晶界面积增加,固溶处理时,基体内由于热错配产生的位错,异号位错相互抵消,同号位错则经攀移排列成垂直于滑移晶面的小角度晶界形成亚晶界,这样亚晶界面积也随之相应增加。由Hall-Petch关系式可知,晶界、亚晶界的增加,基体合金晶粒、亚晶结构和共晶Si颗粒细化,可在一定程度上提高复合材料的强度11。基体和增强体相容性的影响基体合金与颗粒增强体之间的界面相容性也是一个必须重视的问题。尤其当采用铝合金为基体时,界面上常出现氧化物元素富集等现象,有时界面上基体与增强体发生化学反应生成新相,如Al4C3、MgO或MgAl2O4。因此对于不同的颗粒增强体,为避免界面反应物产生的危害,在保证复合材料性能的前提下基体合金的成分应有所调整。由于铝合金中的不同溶质元素所引起的时效析出行为具有一定的差异,颗粒增强铝基复合材料对基体的显微组织十分敏感。从这一角度出发,为充分发挥复合材料的性能优越性,也必须选择合适的基体合金12。此外,颗粒增强体的加入,导致了基体合金的微观组织发生显著的变化。主要体现为,由于基体和增强体热膨胀系数的差别引起的错配应力在基体中诱发了高密度位错、晶粒尺寸变化、残余应力、时效析出组织等。这些微观组织的改变都会不同程度地对复合材料的性能产生重要的影响12。工艺的影响不同的制备方法使得复合材料的性能有很大的差异。热处理工艺,例如淬火就能对复合材料起到一定的强化作用。时效对复合材料也有明显的强化作用。二次加工对复合材料的强度也有很大的影响。原位生成法制备的复合材料,由于原位增强相不仅尺寸非常细小,而且与基体有着良好的界面相容性,从而使得这种复合材料较传统的外加增强相复合材料具有较高的强度。高能球磨法使增强体颗粒弥散均匀分布于基体中,而常规
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号