资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划p型半导体材料包括哪些P型和N型半导体如果杂质是周期表中第族中的一种元素受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第族元素的传导电子能级。因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位”,所以通常把它叫做“空穴”,而这种材料被称为“P”型半导体。在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子”。如图1所示。N型半导体如果掺入的杂质是周期表第V族中的某种元素施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗的最大能级,因此电子很容易从这个能级进入第族元素的传导带。这些材料就变成了半导体。因为传导性是由于有多余的负离子引起的,所以称为“N”型。也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而电子被称为“多数载流子”。如图2所示。P型和N型半导体的应用由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。PNP或NPN以及形成双结的半导体就是晶体管。用于LEDLED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。LED的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(PNJunctionTransistors)。PN结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,而在PN结中少数载流子与多数载流子进行复合,多余的能量就会转变成光而释放出来。LED正是根据这样的原理实现电光的转换。根据半导体材料物理性能的不同,LED可发出从紫外到红外不同波段、不同颜色的光线。小知识:P型半导体和N型半导体如果在硅或锗等半导体材料中加入微量的硼、铟、镓或铝等三价元素,就变成以空穴导电为主的半导体,即P型半导体。在P型半导体中,空穴(带正电)叫多数载流子;电子(带负电)叫少数载流子。如果在硅或锗等半导体材料中加入微量的磷、锑、砷等五价元素,就变成以电子导电为主的半导体,即N型半导体。在N型半导体中,电子(带负电)叫多数载流子;空穴(带正电)叫少数载流子。在半导体热电偶中的应用热电制冷是热电效应主要是珀尔帖效应在制冷技术方面的应用。实用的热电制冷装置是由热电效应比较显著、热电制冷效率比较高的半导体热电偶构成的。半导体热电偶由N型半导体和P型半导体组成。N型材料有多余的电子,有负温差电势。P型材料电子不足,有正温差电势;当电子从P型穿过结点至N型时,结点的温度降低,其能量必然增加,而且增加的能量相当于结点所消耗的能量。相反,当电子从N型流至P型材料时,结点的温度就会升高。直接接触的热电偶电路在实际应用中不可用,所以用下图的连接方法来代替,实验证明,在温差电路中引入第三种材料不会改变电路的特性。这样,半导体组件可以用各种不同的连接方法来满足使用者的要求。把一个P型半导体组件和一个N型半导体组件联结成一对热电偶,接上直流电源后,在接头处就会产生温差和热量的转移。在上面的接头处,电流方向是从N至P,温度下降并且吸热,这就是冷端;而在下面的一个接头处,电流方向是从P至N,温度上升并且放热,因此是热端。按图中把若干对半导体热电偶对在电路上串联起来,而在传热方面则是并联的,这就构成了一个常见的制冷热电堆。按图示接上直流电源后,这个热电堆的上面是冷端,下面是热端。借助铝散热器等各种散热手段,使热电堆的热端不断散热并且保持一定的温度,把热电堆的冷端放到工作环境中去吸热降温,这就是热电制冷器的工作原理。图3是热电偶的工作原理示意图。本征半导体不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子-空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射或晶格的热振动能量。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。半导体半导体中杂质半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生电流是指电荷的定向移动。在半导体材料硅或锗晶体中掺入三价元素杂质可构成缺壳粒的P型半导体,掺入五价元素杂质可构成多余壳粒的N形半导体。1,说锗晶体本身是电中性的,那掺入三价元素杂质后的P型半导体还是电中性的吗?2,入三价元素杂质的N形半导体如果还为电中性,为什么电子的数目较多?3,入五价元素杂质的P型半导体如果还为电中性,为什么空穴的数目较多?空穴在电场力的作用下还可以移动?那空穴到底指的是什么?4,果P型半导体和N形半导(来自:写论文网:p型半导体材料包括哪些)体都符合了电中性,那结合之后电子为什么在没有电场力的作用下还可以移动?P型和N型半导体如果杂质是周期表中第族中的一种元素受主杂质,例如硼或铟,它们的价电子带都只有三个电子,并且它们传导带的最小能级低于第族元素的传导电子能级。因此电子能够更容易地由锗或硅的价电子带跃迁到硼或铟的传导带。在这个过程中,由于失去了电子而产生了一个正离子,因为这对于其它电子而言是个“空位”,所以通常把它叫做“空穴”,而这种材料被称为“P”型半导体。在这样的材料中传导主要是由带正电的空穴引起的,因而在这种情况下电子是“少数载流子”。如图1所示。N型半导体如果掺入的杂质是周期表第V族中的某种元素施主杂质,例如砷或锑,这些元素的价电子带都有五个电子,然而,杂质元素价电子的最大能级大于锗的最大能级,因此电子很容易从这个能级进入第族元素的传导带。这些材料就变成了半导体。因为传导性是由于有多余的负离子引起的,所以称为“N”型。也有些材料的传导性是由于材料中有多余的正离子,但主要还是由于有大量的电子引起的,因而电子被称为“多数载流子”。如图2所示。P型和N型半导体的应用由P型半导体或N型半导体单体构成的产品有热敏电阻器、压敏电阻器等电阻体。由P型与N型半导体结合而构成的单结半导体元件,最常见的是二极管;此外,FET也是单结元件。PNP或NPN以及形成双结的半导体就是晶体管。用于LEDLED在20世纪60年代诞生后就被认定是荧光灯管、灯泡等照明设备的终结者,甚至有人认为LED将会开创一个新的照明时代,最终出现在所有需要照明的场合。LED的工作原理和我们常见的白炽灯、荧光灯完全不同,LED从本质上来说是一种半导体器件。LED的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体的交界面就会出现一个具有特殊导电性能的薄层,也就是常说的PN结(PNJunctionTransistors)。PN结可以对P型半导体和N型半导体中多数载流子的扩散运动产生阻力,当对PN结施加正向电压时,电流从LED的阳极流向阴极,而在PN结中少数载流子与多数载流子进行复合,多余的能量就会转变成光而释放出来。LED正是根据这样的原理实现电光的转换。根据半导体材料物理性能的不同,LED可发出从紫外到红外不同波段、不同颜色的光线。小知识:P型半导体和N型半导体如果在硅或锗等半导体材料中加入微量的硼、铟、镓或铝等三价元素,就变成以空穴导电为主的半导体,即P型半导体。在P型半导体中,空穴(带正电)叫多数载流子;电子(带负电)叫少数载流子。如果在硅或锗等半导体材料中加入微量的磷、锑、砷等五价元素,就变成以电子导电为主的半导体,即N型半导体。在N型半导体中,电子(带负电)叫多数载流子;空穴(带正电)叫少数载流子。在半导体热电偶中的应用热电制冷是热电效应主要是珀尔帖效应在制冷技术方面的应用。实用的热电制冷装置是由热电效应比较显著、热电制冷效率比较高的半导体热电偶构成的。半导体热电偶由N型半导体和P型半导体组成。N型材料有多余的电子,有负温差电势。P型材料电子不足,有正温差电势;当电子从P型穿过结点至N型时,结点的温度降低,其能量必然增加,而且增加的能量相当于结点所消耗的能量。相反,当电子从N型流至P型材料时,结点的温度就会升高。直接接触的热电偶电路在实际应用中不可用,所以用下图的连接方法来代替,实验证明,在温差电路中引入第三种材料不会改变电路的特性。这样,半导体组件可以用各种不同的连接方法来满足使用者的要求。把一个P型半导体组件和一个N型半导体组件联结成一对热电偶,接上直流电源后,在接头处就会产生温差和热量的转移。在上面的接头处,电流方向是从N至P,温度下降并且吸热,这就是冷端;而在下面的一个接头处,电流方向是从P至N,温度上升并且放热,因此是热端。按图中把若干对半导体热电偶对在电路上串联起来,而在传热方面则是并联的,这就构成了一个常见的制冷热电堆。按图示接上直流电源后,这个热电堆的上面是冷端,下面是热端。借助铝散热器等各种散热手段,使热电堆的热端不断散热并且保持一定的温度,把热电堆的冷端放到工作环境中去吸热降温,这就是热电制冷器的工作原理。图3是热电偶的工作原理示意图。目的-通过该培训员工可对保安行业有初步了解,并感受到安保行业的发展的巨大潜力,可提升其的专业水平,并确保其在这个行业的安全感。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号