资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划三d打印材料的优缺点3D打印机的主要技术平台及优缺点3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看,3D打印技术突破了传统成型方法,通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周期大大缩短,生产成本大幅下降。3D打印,俗称“三维打印技术”或“快速制造技术”,是对一系列“增材制造”技术的总称。那么,3D打印技术主要分为哪几种,优缺点是什么呢?以下详细说明:一、FDM:熔融沉积成型工艺熔融沉积成型工艺是继LOM工艺和SLA工艺之后发展起来的一种3D打印技术。该技术于1988年发明,随后Stratasys公司成立并在1992年推出了世界上第一台基于FDM技术的3D打印机“3D造型者”,这也标志着FDM技术步入商用阶段。国内的清华大学、北京大学、北京殷华公司、中科院广州电子技术有限公司都是较早引进FDM技术并进行研究的科研单位。FDM工艺无需激光系统的支持,所用的成型材料也相对低廉,总体性价比高,这也是众多开源桌面3D打印机主要采用的技术方案。FDM成型原理:熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动,熔融的丝材被挤出后随即会和前一层材料粘合在一起。一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。下面我们一起来看看FDM的详细技术原理。FDM成型技术的优点:成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低;另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。原材料以材料卷得的形式提供,易于粉末材料搬运和储存以及快速更换;原材料在成型过程中无化学变化,相对金属粉末,树脂固化制件成型的变形小。FDM成型技术的缺点:需要配合支撑结构打内腔模型时,支撑面效果欠佳。需要对整个截面进行逐步打印,成型时间较长,成型速度相对SLA慢7%左右。二、SLA与DLP:立体光固化成型工艺SLA立体光固化成型工艺又称立体光刻成型,该工艺最早于1984年提出并获得美国国家专利,是最早发展起来的3D打印技术之一。该专利申请两年后便成立了3DSystems公司,并于1988年发布了世界上第一台商用3D打印机SLA-250。SLA工艺以光敏树脂作为材料,在计算机的控制下紫外激光将对液态的光敏树脂进行扫描从而让其逐层凝固成型,SLA工艺能以简洁且全自动的方式制造出精度极高的几何立体模型;DLP投影成型技术导引:为了提高光固化成型速度,由之前激光扫描固化提高到固化更快面积更大的投影固化技术;SLA激光光固化成型原理:液槽中会先盛满液态的光敏树脂,氦-镉激光器或氩离子激光器发射出的紫外激光束在计算机的操纵下按工件的分层截面数据在液态的光敏树脂表面进行逐行逐点扫描,这使扫描区域的树脂薄层产生聚合反应而固化形成工件的一个薄层。当一层树脂固化完毕后,工作台将下移一个层厚的距离以使在原先固化好的树脂表面上再覆盖一层新的液态树脂,刮板将黏度较大的树脂液面刮平然后再进行下一层的激光扫描固化。因为液态树脂具有高黏性而导致流动性较差,在每层固化之后液面很难在短时间内迅速抚平,这样将会影响到实体的成型精度。采用刮板刮平后,所需要的液态树脂将会均匀地涂在上一叠层上,这样经过激光固化后将可以得到较好的精度,也能使成型工件的表面更加光滑平整。新固化的一层将牢固地粘合在前一层上,如此重复直至整个工件层叠完毕,这样最后就能得到一个完整的立体模型。当工件完全成型后,首先需要把工件取出并把多余的树脂清理干净,接着还需要把支撑结构清除掉,最后还需要把工件放到紫外灯下进行二次固化。SLA工艺成型效率高,系统运行相对稳定,成型工件表面光滑精度也有保证,适合制作结构异常复杂的模型,能够直接制作面向熔模精密铸造的中间模。尽管SLA的成型精度高,但成型尺寸也有较大的限制而不适合制作体积庞大的工件,成型过程中伴随的物理变化和化学变化可能会导致工件变形,因此成型工件需要有支撑结构。目前SLA工艺所支持的材料还相当有限且价格昂贵,液态的光敏树脂具有一定的毒性和气味,材料需要避光保存以防止提前发生聚合反应。SLA成型的成品硬度很低而相对脆弱。此外,使用SLA成型的模型还需要进行二次固化,后期处理相对复杂。DLP投影固化成型原理:光源透过聚光镜,使光源均匀分布,菲涅尔镜是光源垂直照射在液晶屏上,液晶屏两面分别有偏振膜,偏振膜是液晶显示成像的基础,任何液晶屏自身都有偏振膜,液晶屏的成像显示就是透明显示的,图像就会通过液晶屏照射到光敏树脂上,托板与底模之间固定高度的树脂通过投影的光发生固化成形并附着在托板上,再由托板将固化成形的部分拉起,让液体再次补充进来,托板在下降,从而托板与底模之间的薄层树脂再次发生固化并附着在之前成形的固化树脂上,周而复始,逐层固化直到完成模型整体成形。1.光源2.聚焦透镜3.菲涅尔透镜4.偏振膜5.液晶屏6.偏振膜7.储液槽底模8.光固化树脂9.光固化成型托板紫外线光源采用半导体LED光源,或者辅助增加高压钠灯来提高光源强度,缩短曝光固化时间。液晶屏上放着的是储液槽,储液槽下方是透明薄膜结构,要比较松弛,不要过于绷紧,不利于固化脱模。光固化成型优点:表面质量好;整面固化,成型速度快;光固化成型缺点:尺寸的稳定性差。成型过程中伴随着物理和化学变化,导致软薄部分易产生翘曲变形,因而极大地影响成型件的整体尺寸精度。所以需要设计成型件的支撑结构,否则会引起成型件的变形。可使用的材料种类较小。目前可使用材料主要为感光性液态树脂材料,并且因为材料本身特性问题,不能对成型件进行抗力和热量的测试。液态树脂具有气味和毒性,并且需要避光保护,以防止其提前发生聚合反应,选择时有局限性。需要二次固化。在很多情况下,经过快速成型系统光固化后的原型树脂并未完全被激光固化,所以通常需要二次固化。三、SLS:选择性激光烧结工艺SLS技术起源于1986年,于1988年研制成功了第一台SLS成形机。随后,由美国的DTM公司将其商业化,于1992年推出了该工艺的商业化生产设备SinterStationXX成形机。在过去的20多年里,SLS技术在各个领域得到广泛的应用,研究选择性激光烧结设备工艺的单位有美国的DTM公司、3DSystems公司、德国的EOS公司,在国内也有许多科研单位开展了对SLS工艺的研究,如南京航空航天大学、中北大学、华中科技大学、武汉滨湖机电产业有限公司、北京隆源自动成型有限公司、湖南华曙高科等;3D打印技术的优缺点以及应用领域3D打印技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用3D打印机技术,使得3D打印机技术有着广阔的前景。不断提高3D打印技术的应用水平是推动这项技术发展的重点。优点:一是最直接的好处就是节省材料,不用剔除边角料,提高材料利用率,通过摒弃生产线而降低了成本;二是能做到很高的精度和复杂程度,除了可以表现出外形曲线上的设计;三是不再需要传统的刀具、夹具和机床或任何模具,就能直接从计算机图形数据中生成任何形状的零件;四是它可以自动、快速、直接和精确地将计算机中的设计转化为模型,甚至直接制造零件或模具,从而有效的缩短产品研发周期;五是3D打印能在数小时内成形,它让设计人员和开发人员实现了从平面图到实体的飞跃;六是它能打印出组装好的产品,因此它大大降低了组装成本,它甚至可以挑战大规模生产方式。缺点:任何一个产品都应该具有功能性,而如今由于受材料等因素限制,通过3D打印制造出来的产品在实用性上要打一个问号。强度问题:房子、车子固然能“打印”出来,但是否能抵挡得住风雨,是否能在路上顺利跑起来?精度问题:由于分层制造存在“台阶效应”,每个层次虽然很薄,但在一定微观尺度下,仍会形成具有一定厚度。的一级级“台阶”,如果需要制造的对象表面是圆弧形,那么就会造成精度上的偏差;材料的局限性:目前供3D打印机使用的材料非常有限,无外乎石膏、无机粉料、光敏树脂、塑料等。能够应用于3D打印的材料还非常单一,以塑料为主,并且打印机对单一材料也非常挑剔。目前,3D打印技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。3D打印技术的实际应用主要集中在以下几个方面:产品设计领域在新产品造型设计过程中的应用3D打印技术为工业产品的设计开发人员建立了一种崭新的产品开发模式。运用3D打印技术能够快速、直接、精确地将设计思想转化为具有一定功能的实物模型(样件),这不仅缩短了开发周期,而且降低了开发费用,也使企业在激烈的市场竞争中占有先机。建筑设计领域建筑模型的传统制作方式,渐渐无法满足高端设计项目的要求。全数字还原不失真的立体展示和风洞及相关测试的标准,现如今众多设计机构的大型设施或场馆都利用3D打印技术先期构建精确建筑模型来进行效果展示与相关测试,3D打印技术所发挥的优势和无可比拟的逼真效果为设计师所认同。机械制造领域由于3D打印技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用3D打印技术直接进行成型,成本低,周期短。模具制造领域例如玩具制作等传统的模具制造领域,往往模具生产时间长,成本高。将3D打印技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。3D打印技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用3D打印技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具。医学领域在医学领域的应用近几年来,人们对3D打印技术在医学领域的应用研究较多。以医学影像数据为基础,利用3D打印技术制作人体器官模型,对外科手术有极大的应用价值。文化艺术领域在文化艺术领域的应用,3D打印技术多用于艺术创作、文物复制、数字雕塑等。航天技术领域在航空航天领域中,空气动力学地面模拟实验(即风洞实验)是设计性能先进的天地往返系统(即航天飞机)所必不可少的重要环节。该实验中所用的模型形状复杂、精度要求高、又具有流线型特性,采用3D打印技术,根据CAD模型,由3D打印设备自动完成实体模型,能够很好的保证模型质量。家电领域3D打印技术在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。如:广东的美的、华宝、科龙;江苏的春兰、小天鹅;青岛的海尔等,都先后采用3D打印技术来开发新产品,收到了很好的效果。3D打印技术的应用很广泛,可以相信,随着3D打印技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。本文由中国标识网收集整理,更多信息请访问标识商学院。3D打印的十大优势和五大限制3D打印机不像传统制造机器那样通过切割或模具塑造制造物品。通过层层堆积形成实体物品的方法从物理的角度扩大了数字概念的范围。对于要求具有精确的内部凹陷或互锁部分的形状设计,3D打印机是首选的加工设备,它可以将这样的设计在实体世界中实现。下面是来自各个行业、具有不同背景和专业技术水平的人用类似的方式
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号