资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划机械工程材料,审稿费(共3篇)机械工程材料课程论文姓名所在学院专业班级学号期日机械工程材料的发展与趋势【摘要】机械工程材料具有广泛的用途,在国民经济中占有极其重要的地位。本文对此类材料的现阶段的发展现状进行探析。【关键词】工程材料金属高分子复合材料陶瓷材料发展现状探析前言:材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑,当今有人将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。人类先后经历了:石器时代铁器时代钢铁时代,这说明以学一种类材料为主导的时代已经一不复返了。材料的发展已进入丰富多采的时代,而以保护资源、环境和生态为目的的材料设计思想已形成新的潮流,即“生态环境材料”。机械工程材料按成分和组成特点分为:金属材料、高分子材料、复合材料、陶瓷材料四大类。一、金属材料依然在材料家族中占有统治地位金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:分类:金属材料通常分为黑色金属、有色金属和特种金属材料。黑色金属又称钢铁材料,包括含铁90以上的工业纯铁,含碳24的铸铁,含碳小于2的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。性能材料的使用性能包括物理性能、化学性能,力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。1.2主要优势:、金属材料的力学性能全面,可靠性高,使用安全;、具有良好的温度使用范围;良好的工艺性能;、储量丰富,适合大规模应用金属材料,尤其是新型金属材料在目前的情况下,应用较为广泛,前景依然不错,这种状况将持续很长时间,非金属材料的研究进展将决定这种状态的时间长短。1.3金属材料总的发展趋势:金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。金属材料行业前景将不断上升。二、高分子材料现状及前沿随着生产和科学技术的发展,不断对材料提出各种各样的新要求。通用高分子材料向高性能、多功能、低污染、低成本方向发展通用高分子材料主要是指塑料、橡胶、纤维三大类合成高分子材料及涂料、黏合剂等精细高分子材料。高性能、多功能、低成本、低污染是通用合成高分子材料显著的发展趋势。在聚烯烃树脂研究方面,如通过新型聚合催化剂的研究开发、反应器内聚烯烃共聚合金技术的研究等来实现聚烯烃树脂的高性能、低成本化。高性能工程塑料的研究方向主要集中在研究开发高性能与加工性兼备的材料。合成橡胶方面,如通过研究合成方法、化学改性技术、共混改性技术、动态硫化技术与增容技术、互穿网络技术、链端改性技术等来实现橡胶的高性能化。在合成纤维方面,特种高性能纤维、功能性、差别化、感性化纤维的研究开发仍然是重要的方向。同时生物纤维、纳米纤维、新聚合物纤维德研究和开发也是纤维研究的重要领域。在涂料和黏合剂方面,环境友好及特殊条件下使用的高性能涂料和黏合剂是发展的两个主要方向。三、复合材料现状及前沿复合材料,顾名思义是指由两种或两种以上的具有不同化学和物理性质的素材复合组成的一种材料。其力学特性有各向异性、纤维和基体的界面特性以及强度的分散性。其一般分为:高分子基复合材料、金属基复合材料、陶瓷基复合材料。四、陶瓷材料的现状及前沿陶瓷材料是以抗压强度大、耐高温、刚度强、韧性好、耐磨损、硬度高、耐腐蚀、抗氧化性能好、疲劳强度大等力学性能为特征的材料,但是,陶瓷性脆,没有延展性,经不起碰撞和急冷急热。在现代工程材料中,陶瓷材料作为应用做广泛的材料之一,在化工、电器、纺织、建筑等行业等到普遍应用。如化工中的容器、反应塔、管道;电器工业中的绝缘子;内燃机中的火活塞;轴承、切削材料的刀具等。五未来机械工程材料的发展趋势21世纪以前,科学与技术着重于认识自然世界,不断提高人类生存能力;21世纪科技将更多地着眼于认识人类自身,不断提高人的生命质量。在21世纪里,就制造业来讲,发明和发展了汽车、机床、机器人、飞机、火箭、芯片、计算机、电视机等成千上万的机电产品,极大地改变了人类的生产方式和生活方式。展望未来,21世纪机械工程材料将更加伟大、更加辉煌。制造业将出现更多意想不到的奇迹。机械工程材料生产的汽车不仅会跑,可能还会飞;制造的飞机将更快、更安全;高速列车和磁悬浮列车将飞驰在祖国的原野;智能仪器装备和智能机器人将按照人们的要求高效率、高质量地制造产品;微型机器人将能进入血管清理“垃圾”、修补心脏;人们可用分子组装技术组装出理想性能的微器件;掌上工具可能是计算机、可视电话、电视、音响和网络的集成,等等。未来机械工程科学发展的总趋势将是交叉、综合化;柔性、集成化;智能、数字化;精密、微型化;高效、清洁化。智能机器人及仪器设备、微型机电系统、高效柔性、智能自动化制造技术将日趋成熟,并被市场所接受;可重构制造系统的理论与技术和适合我国的制造模式将得到完善和发展;在机构学、摩擦学、仿生机械和仿生制造等领域我国将进入世界先进行列;我国科学家问鼎诺贝尔奖将不是天方夜谭。制造业在制造科学技术的武装下将全面现代化,国家由于制造业创造的财富而更加昌盛繁荣。人民的生活将更加富裕潇洒。信息科学、材料科学、生命科学、纳米科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界。与以上领域交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等是21世纪机械工程科学的重要前沿。半个世纪以来,我国的机械工程科学得到了很大的发展,我们已经建立了较完善机械工程材料知识点第一章金属材料的力学性能及其测定金属材料的力学性能是指材料在外加载荷作用下所表现出来的性能。任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。载荷分为静载荷和交变载荷金属表现来的诸如疲脑强度、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为,单位为MPa。工程中常用的强度指标有弹性极限屈服点抗拉强度和断面收缩率、短试件、长件、细长件晶体:结构具有周期性和对称性的固体,原子或分子排列规则。晶格:用假想的直线将原子中心连接起来所形成的三维空间格架。液态金属在理论结晶温度以下开始结晶的现象称过冷。理论结晶温度与实际结晶温度的差?T称过冷度?T=T0T1硬度及其测量硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度是材料的重要力学性能指标。一般材料的硬度越高,其耐磨性越好。材料的强度越高,塑性变形抗力越大,硬度值也越高。布氏硬度是用单位压痕面积的力作为布氏硬度值的计量即试验力除以压痕表面积,符号用HBS或HBW表示,即:洛氏硬度是用压痕深度作为洛氏硬度值的计量即,符号用HR表示,其计算公式为:洛氏硬度值=K?淬火钢球压头多用于测定退火件、有色金属等较软材料的硬度,压入深度较深;金刚石压头多用于测定淬火钢等较硬材料的硬度,压入深度较浅。采用不同的压头与总试验力,组合成几种不同的洛氏硬度标尺。我国常用的是HRA、HRB、HRC三种,其中HRC应用最广。洛氏硬度无单位,须标明硬度标尺符号,在符号前面写出硬度值,如58HRC、76HRA。读法,例如,45HRC表示用C标尺测定的洛氏硬度值为45。布氏硬度实验的优缺点:优点:是测定的数据准确、稳定、数据重复性强,常用于测定退火、正火、调质钢、铸铁及有色金属的硬度。缺点:是对不同材料需要更换压头和改变载荷,且压痕较大,压痕直径的测量也较麻烦,易损坏成品的表面,故不宜在成品上进行试验。洛氏硬度试验的优缺点:优点:是操作迅速、简便,硬度值可从表盘上直接读出;压痕较小,可在工件表面试验;可测量较薄工件的硬度,因而广泛用于热处理质量的检验。缺点:是精确性较低,硬度值重复性差、分散度大,通常需要在材料的不同部位测试数次,取其平均值来代表材料的硬度。此外,用不同标尺测得的硬度值彼此之间没有联系,也不能直接进行比较。维氏硬度也是以单位压痕面积的力作为硬度值计量。试验力较小,压头是锥面夹角为136的金刚石正四棱锥体,见图所示。维氏硬度用符号HV表示。维氏硬度表示方法:在符号HV前方标出硬度值,在HV后面按试验力大小和试验力保持时间的顺序用数字表示试验条件。例如:640HV300。维氏硬度试验的优缺点:优点:是可测软、硬金属,特别是极薄零件和渗碳层、渗氮层的硬度,其测得的数值较准确,并且不存在布氏硬度试验那种载荷与压头直径比例关系的约束。此外,维氏硬度也不存在洛氏硬度那样不同标尺的硬度无法统一的问题,而且比洛氏硬度能更好地测定薄件或薄层的硬度。缺点:是硬度值的测定较为麻烦,工作效率不如洛氏硬度,因此不太适合成批生产的常规检验。冲击韧性、疲劳强度冲击韧性:金属材料抵抗冲击载荷而不破坏的能力。工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功?,单位为焦耳。?=?。冲击韧度?疲劳强度:材料在循环应力的作用下,在一处或几处产生局部永久性积累损伤,经一定循环次数后或突然发生完全断裂的过程称为疲劳。疲劳强度用?1表示单位MPa第二章铁碳合金合金是由两种或两种以上金属元素或金属和非金属组成的具有金属特性的物质合金中凡成分相同、结构相同、聚集态相同,并与其它部分有界面分开的均匀组成部分称为相固溶强化:固溶体中晶格畸变较大,随溶质原子增加合金强度和硬度提高,塑性和韧性降低。以固溶体为基,弥散分布金属间化合物,可提高
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号