资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划燃料电池的正极材料燃料电池电极材料简述By小叶好的摘要本文分别简述了五种燃料电池的点击材料的发展状况。分别从质子交换膜燃料电池、固体氧化物燃料电池、磷酸燃料电池、碱性燃料电池、熔融盐燃料电池五种类型分别对电极材料进行简述,并结合最新的前沿研究对燃料电池电极材料进行简单的论述。关键词燃料电池正极材料负极材料电极燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。一质子交换膜燃料电池质子交换膜燃料电池是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。在质子交换膜燃料电池中,电解质是一片薄的聚合物膜,例如聚全氟磺酸,和质子能够渗透但不导电的NafionTM,而电极基本由碳组成。氢流入燃料电池到达阳极,裂解成氢离子和电子。氢离子通过电解质渗透到阴极,而电子通过外部网路流动,提供电力。以空气形式存在的氧供应到阴极,与电子和氢离子结合形成水。在电极上的这些反应如下:阳极:2H24H+4e-阴极:O2+4H+4e-2H2O整体:2H2+O22H2O+能量质子交换膜燃料电池的工作温度约为80。在这样的低温下,电化学反应能正常地缓慢进行,通常用每个电极上的一层薄的白金进行催化。这种电极/电解质装置通常称做膜电极装配,将其夹在二个场流板中间便能构成燃料电池。这二个板上都有沟槽,将燃料引导到电极上,也能通过膜电极装配导电。每个电池能产生约伏的电,足够供一个照明灯泡使用。驱动一辆汽车则需要约300伏的电力。为了得到更高的电压,将多个单个的电池串联起来便可形成人们称做的燃料电池存储器。二固体氧化物燃料电池固体氧化物燃料电池属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置。被普遍认为是在未来会与质子交换膜燃料电池(PEMFC)一样得到广泛普及应用的一种燃料电池。广泛采用陶瓷材料作阴极和阳极电极材料,具有全固态结构。陶瓷电解质要求中、高温运行,加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。阴极材料目前已经有用柠檬酸络合法制备超细的钙钛矿型结构的固体氧化物燃料电池阴极材料La_()Sr_()Co_()CuO_(3-)(LSCC).选用合适的反应条件和煅烧温度制得所需要的材料后,用DSC-TG、XRD、SEM等对粉体进行物相测定和形貌观察;选用不同温度煅烧前驱体,得到不同比表面积的粉体材料,通过半干法工艺成型LSCC阴极材料并测试它在不同温度条件下的电性能.结果表明,溶胶凝胶-高温自燃烧法能制备出超细纯相的LSCC阴极材料,且该阴极材料在中温条件下使用具有良好的导电性能(不低于150S/cm)和输出功率(W/cm2)和较低的活化能(kJ/mol).最近,一些具有电子和氧离子混合传导的A2B2O5型复合氧化物成为人们研究的热点材料。这类材料主要包括层状钙钛矿结构,如LnBaCo2O5+(Ln为稀土元素)、LaBaCuFeO5+和YBaCuCoO5+等氧化物和钙铁石结构,如Ca2Fe2O5、La2Co2O5等氧化物13。由于具有良好的晶体结构、独特的电化学性能以及较高催化活性,这些氧化物在新材料开发方面得到了高度的重视4,5。有关A2B2O5型层状钙钛矿结构氧化物用于SOFC阴极材料的研究最近也有一些报道,并且表现出较好的电化学性能。Tarancn等报道了GdBaCo2O5+氧化物阴极材料在不同固体电解质上的电化学性能,发现当测试温度为700时,电极的极化电阻最小值为.cm2。同时,Kim等研究了PrBaCo2O5+阴极材料的氧扩散及表无机化学学报第25卷面交换性能,结果显示,在测试温度范围内该材料具有很好的氧扩散能力;同时,电化学测试结果显示,在较低的测试温度下(600),PrBaCo2O5+阴极材料具有较小的极化电阻(.cm2)。三磷酸燃料电池磷酸燃料电池是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于150-200左右,但仍需电极上的白金催化剂来加速反应。其阳极和阴极上的反应与质子交换膜燃料电池相同,但由于其工作温度较高,所以其阴极上的反应速度要比质子交换膜燃料电池的阴极的速度快。目前已经有ElectroChem电池,其标准电极是使用在碳纸上的10wt%,20wt%Pt/C或30wt%Pt/RU触媒.我们也有特别订制的电极可供选择。但是目前比较成熟的是,正极材料采用磷酸铁锂,正极集流体采用铝箔,导电剂选用超导炭黑、导电石墨的一种或两种混合物,正极材料粘结剂选用聚偏二氟乙烯;负极材料采用天然石墨或人造石墨,负极集流体采用铜箔,导电剂选用超导炭黑、导电石墨一种或两种混合物,负极材料粘结剂选用聚偏二氟乙烯或羧甲基纤维素纳、丁苯橡胶;正极片、负极片、隔膜经多层层叠卷绕制成圆柱形卷芯。本发明不仅容量大,而且可以大倍率放电。合成方法主要有二步法工艺和胶-凝胶法,二步法工艺先是将含铁、酸根的原料均匀混合,在较低温度下合成结晶程度较好的磷酸铁锂;然后将磷酸铁锂和复合导电剂(无机导电物与含碳导电剂前驱物)充分混和,在较高温度下经短时间热处理即可得到电化学性能优良的正极材料磷酸铁锂,获得的磷酸铁锂结晶性好,其与导电剂的界面作用强,使材料的锂离子和电子导电率高,并适合用于大倍率充放,本工艺原料为廉价化工产品,合成工艺简单,易于规模化生产,添加电子导电剂的方法独特,产品材料电化学性能优良。溶胶-凝胶法制备锂离子电池正极材料磷酸钒锂的方法。将五氧化二钒粉末加热到600-900,并恒温1-4h使其熔融后迅速倒入装有水的容器中形成棕红色溶液,然后往溶液中加入锂盐、磷酸盐和有机酸,混合均匀后,在惰性气体的保护下于400-700烧结5-20h,冷却后即为成品。四碱性燃料电池碱性燃料电池一般以碳为电极,并使用氢氧化钾为电解质。碱性燃料电池的电能转换效率为所有燃料电池中最高的,最高可达70%。19世纪60年代初,中温碱性燃料电池被用于太阳神阿波罗太空飞船,标志着燃料电池技术成为民用。碱性燃料电池在太空飞行中的应用获得成功,因为空间站的推动原料是氢和氧,电池反应生成的水经过净化可供宇航员饮用,其供氧分系统还可以与生保系统互为备份,而且对空间环境不产生污染。20世纪90年代以来,众多汽车生产商都在研究使用低温燃料电池作为汽车动力电池的可行性。由于低温碱性燃料电池存在易受CO2毒化等缺陷,使其在汽车上的应用受到限制,因此,除少数机构还在研究碱性燃料电池外,大多数汽车厂商和研究机构都在质子交换膜燃料电池和直接甲醇燃料电池上寻求突破。然而PEMFC和DMFC都以贵金属Pt为主催化剂,一旦PEMFC和DMFC达到真正的批量生产阶段,将被迫面临Pt的匮乏。碱性燃料电池可以不采用贵金属作催化剂,如果采用CO2过滤器或碱液循环等手段去除CO2,克服其致命弱点后,用于汽车的碱性燃料电池将具有现实意义。因此,碱性燃料电池领域近年的研究重点是CO2毒化解决方法和替代贵金属的催化剂。最近的研究表明,CO2毒化问题可通过多种方式解决,如通过电化学方法消除CO2,使用循环电解质、液态氢,以及开发先进的电极制备技术等。德国的Gulzow,E.等人XX年研究发现:当电极采用特殊方法制备时,可以在CO2含量较高的条件下正常运行而不受毒化。在电极制备中,催化剂材料与PTFE细颗粒在高速下混合,粒径小于1m的PTFE小颗粒覆盖在催化剂表面,增加了电极强度,同时也避免了电极被电解液完全淹没,减小了碳酸盐析出堵塞微孔及对电极造成机械损害的可能性。香港大学倪萌等人XX年提出使用氨作为氢源在碱性燃料电池上使用将具有较好的发展前景。氨在室温下仅需89MPa就可被液化,不需较高能量消耗,且价格低,已有比较完善的生产、运输体系。氨具有强烈刺鼻的气味,其泄漏很容易检测。氨的爆炸范围比较小,仅15%28%,相对安全。在碱性燃料电池使用中,只需在燃料入口增加一个重整器,将NH3分解为N2和H2即可。NH3的使用为碱性燃料电池的应用展开了一片较好的前景。在替代贵金属的催化剂方面,近年的研究集中于:如何在非贵金属催化剂的稳定性和电极性能方面取得突破,开发与贵金属复合的多元催化剂,以及提高贵金属利用率、降低贵金属负载量等。基于纳米材料的电催化剂的应用研究是该领域近年的发展方向之一,纳米材料具有大比表面积、优良的导电性,在强碱液中表现出良好的耐蚀性,碳纳米管可作为碱性燃料电池中H2氧化反应的催化剂或催化剂载体。XX年,印度的等人采用直流电弧放电法制备单壁碳纳米管,经过加热、纯化、浓硝酸处理过后的碳纳米管具有类似于金属氢化物的催化活性。将其与铜粉按比例混合后制备的工作电极的电化学性能稳定、效率较高。XX年,日本汽车商Daihatsu宣布开发出一款无铂的碱性燃料电池。该技术适用于小型、有限范围的汽车,对性能和耐久性的要求不像大型汽车那么严格,但该技术还处于初级阶段,近期不会有商业化产品。近年来,国际研究者在CO2毒化解决方法和替代贵金属的催化剂方面取得的研究进展,为低温碱性燃料电池的汽车应用创造了可能性。五熔融碳酸盐燃料电池熔融碳酸盐燃料电池以熔融碱金属碳酸盐的混合物组成低共熔体系作电解质,以氧化镍为正极、镍为负极的一种燃料电池。其燃料用氢和一氧化碳,氧化剂为空气。1、阳极MCFC的阳极催化剂最早采用银和铂,为降低成本,后来改用了导电性与电催化性能良好的镍。但镍被发现在MCFC的工作温度与电池组装力的作用下会发生烧结和蠕变现象,进而MCFC采用了Ni-Cr或Ni-Al合金等作阳极的电催化剂。加入2%10%Cr的目的是防止烧结,但Ni-Cr阳极易发生蠕变。另外,Cr还能被电解质锂化,并消耗碳酸盐,Cr的含量减少会减少电解质的损失,但蠕变将增大。相比之下,Ni-Al阳极蠕变小,电解质损失少,蠕变降低是由于合金中生成了。2、阴极熔融碳酸盐燃料电池的阴极催化剂普遍采用氧化镍。其典型的制备方法是将多孔镍电极在电池升温过程中就地氧化,而且部分被锂化,形成非化学计量化合物,电极导电性极大提高。但是,这样制备的NiO电极会产生膨胀,向外挤压电池壳体,破坏壳体与电解质基体之间的湿密封。改进这一缺陷的方法有以下几种:Ni电极先在电池外氧化,再到电池中掺Li;或氧化和掺Li都在电池外进行;直接用NiO粉进行烧结,在烧结前掺Li,或在电池中掺Li:在空气中烧结金属镍粉,使烧结和氧化同时完成;在Ni电极中放置金属丝网以增强结构的稳定性等等。参考文献:1.毛宗强等燃料电池化学工业出版社XX.2.马欣.王胜开.陈国顺燃料电池设计与制造电子工业出版社3.肖德.燃料电池技术电子工业出版社4.巴戈茨基(Vladimir)、孙公权、王素力、姜鲁华燃料电池:问题与对策人民邮电出版社电池的电极材料与电极反应电化学中的电极反应不仅与电极材料有关,而且与电解质溶液有关,是中学化学中的一个比较复杂的问题,因此,如何确定电极反应
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号