资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划纳米藤材料浅谈对纳米材料的认识“纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。纳米级结构材料简称为纳米材料(nanometermaterial)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。然而,当人们陶醉在纳米材料的许多新奇功能和它将给我们生活带来的美好前景时,医学界出于特殊的职业敏感性,开始冷静地考虑纳米料将对人类健康产生的深远影响。事实上,纳米技术还将在生态环境、经济、政治、伦理道德等等方面引发诸多问题,从而在社会各个层面,它将取代基因技术成为最受争议的应用技术。总而言之,纳米科技的发展的确给人类带来很多恩惠,推动人们加深对物质世界和生命科学的理解。但是在迅猛发展的纳米浪潮中,我们不能忽视任何事物都会产生的两重效果。因此,应该对纳米材料对人类的潜在影响给予足够的关注和探讨,让纳米材料为人类的发展和社会的进步发挥自身的作用。纳米材料与传统材料的差别?答广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围或由他们作为基本单元构成的材料。特性:表面与界面效应这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。小尺寸效应当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。量子尺寸效应当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在千克水里只要放入千分之一这种粒子,水就会变得完全不透明。宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。纳米科技的分类?答:纳米科技从研究内容上可以分为3类:纳米材料:纳米材料是指材料的几何尺寸达到纳米级的尺寸,并且具有特殊性能的材料。是纳米科技发展的物质基础。纳米器件:所谓纳米器件,是指从纳米尺度上,设计制造的功能器件,纳米器件的研制和应用水平是进入纳米时代的重要标志。纳米尺度的检测盒盒表征。纳米材料的特性及其应用钟京京摘要:纳米材料广义上是三维空间中至少有一维处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。纳米材料被广泛的也能用于各个领域之中,例如建筑界、医学界、化学界、食品界、工业。关键词:纳米材料特性应用建筑界医学界化学界食品界工业人类从未停止过对于这个世界的探寻,尤其是对于物质的构成,大到物体,小到分子、原子。人类对于构成物质世界的最小微粒的探索、研究,帮助我们更深刻的认识这个我们赖以生存的家园,帮助我们更好的推进我们人类的发展,帮助我们更和谐的与地球上的其他物种和平共处。伴随着人类的进一步研究,我们发现物质答到了纳米尺度后,物质的性能就会发生突变,出现特殊性能。纳米特性认识及对于纳米材料的应用对于我们的工作生活将会是以一次历史性的、革命性的巨变。纳米材料广义上是三维空间中至少有一维处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。欧盟委员会则将纳米材料定义为一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上1。表面与界面效应2这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如,粒子表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。小尺寸效应当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象。譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬,我们现在使用的玻璃刀,关键部位用的就是纳米材料制成。利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。量子尺寸效应当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在千克水里只要放入千分之一这种粒子,水就会变得完全不透明。宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。随着时间的脚步不断地迈进,人类对于纳米材料已经不仅仅是停留在研究阶段,近几年研究者已经开始根据纳米材料的不同特性将其运用于各个领域。纳米材料在建筑界的应用考虑到施工方便,成本低,携带方便,承受力面交均匀,粘接面光滑以及良好的工艺性能得到广泛应用,等一系列的优点粘结技术部分取代了焊接、铆接、螺栓连接等传统技术。在多如牛毛的粘合剂中,唯有环氧树脂胶粘剂以其粘接能力强、适应性广等原因而倍受青睐。3其基材环氧树脂具有填料组合性能好、固化过程容易调节、成本低而粘接强度高等优点。近年来,环氧树脂胶粘剂正向低黏度、高强度、耐冲击、阻燃等特殊用途方向发展。相信不久的将来,所有的工业粘合剂基本上将被环氧树脂胶粘剂所取代。纳米材料在化学界的应用众所周知,涂料是含有毒化学分子最多的家居粉饰品之一。如何除去涂料中的有毒化学物质这一问题一直困扰着很多人。现在纳米材料的出现有效地帮我们解决了这个问题。4利用纳米二氧化钛光催化和成膜物质复配成的光催化涂料,可以有效降解空气中的有害质以及涂层表面的污染物,起到自清洁和净化空气的作用。不仅如此,纳米材料的加入还赋予涂料各种各样的功能性和特殊性能。像纳米车用面漆具有高装饰性外,还有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能;美、日等国研究人员用纳米级二氧化钛、二氧化锡、三氧化铬等与树脂复合作为静电屏蔽涂层,不仅可以用于飞航导弹等,还将其运用于潜艇、隐身装甲车、隐身坦克等一系列隐身装备中。将纳米材料运用于汽车装饰还具有杀菌、消毒、除臭的功能。纳米材料在医学界的应用XX年10月29日在海口举行的多所高校联合举办的新型材料论坛上,中科院院士江龙就纳米颗粒在生物医药中的应用发表主题报告表明,当纳米颗粒小于一定尺度并能进入细胞时,对细胞具有毒性,妨碍了纳米技术在医药科学中的应用。但当金纳米颗粒变大或形成聚结体而难以进入细胞时,则对这两种细胞无害,反而能促进细胞的生长.一但这一矛盾得到解决,我们的伤口愈合能力也会随之加强,这样遭受到的痛苦也会随之大大减少,我们在医学领域的技能也将会有一步质的飞跃。纳米材料是理想的骨生材料。优良的生物活性使之能够与生物体组织化学键合,而其耐磨损、耐腐蚀、负载能力强,又能更更加长久的作为人类的骨骼。尤其是对于股骨头坏死的患者来讲,这是一个极大地福音。目前这一技术正在细化研究中,相信要不了多久我们就会看到有这样的“人体骨骼”诞生。纳米材料在食品界的应用随着人类对食品安全意识的逐步提高,更多新类型的农药进入市场。要想检验出食品中的农药含量,就要求灵敏可靠、敏度高、适用性强、简便快捷检测技术。用纳米氧化锌固定酶时,纳米氧化锌不仅对酶具有强吸附性,还保持酶活性、提高酶活性中心与电极间直接电子传递效率。将该传感器用于蔬菜样品有机含磷农药测定,响应快、灵敏度高、具有很好重现性和稳定性,且经复活剂处理后可反复使用。5一但检验出食品中的农药含量就需要想办法去除,磁性纳米粒子的分离过程就是很好的选择。磁性纳米粒子分离过程很方便,且减少成本消耗,并克服其它分离系统很多问题。磁性纳米粒子分离能力和效率较高,能实现大规模和高通量分离。Shen等制备C18修饰磁性纳米粒子,并用于富集和分离蔬菜和水果中14种残留有机磷农药。与普通C18分离柱相比,分离效能基本一样;但C18修饰磁性纳米粒子分离过程简单快速、在重复利用10次后,C18修饰磁性纳米粒子分离性能基本没降低6纳米材料在工业界的应用在工业作业中,最令人痛疼的就是机器和相关零件的磨损问题。尽管现在市面有一些润滑油可以在一定程度上缓解这一问题,但是我们不得不承认缓解的程度还是令人难以满意。如果将
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号