资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划购买超疏水材料超疏水材料及其应用落在荷叶上的雨滴形成水珠顺着叶面缓缓滚动而落下,这种抗水性称为荷叶效应。这是由于荷叶表面的疏水层呈现纳米级的凹凸不平,减少了水珠与叶面的接触面积,植物叶子表面具有的超疏水自清洁的特性,为构建人工疏水表面及设计浸润性可控的界面提供了灵感,引起了研究者的极大关注。一、超疏水材料的表面特征润湿性是指液体与固体表面接触时,液体可以渐渐渗入或附着在固体表面上,是固体表面重要特征之一,这种特征由固体表面化学组成及微观结构共同决定,接触角和滚动角是评价固体表面润湿性的重要参数,超疏水性表面具有防雪、防污染、抗氧化及防止电流传导等特性。植物叶子表面有许多丛生的放射状为茸毛,该微茸毛尖端极易亲水,入水后能瞬间锁定水分子,使叶片表层到茸毛尖端之间形成了一薄层空气膜,从而避免叶片与水直接接触。Brthltt研究发现,这种微茸毛有乳突及腊状物构成,其为微米结构。中科院研究员江雷研究发现,乳突为纳米结构,这种纳米与微米相结合的双微观结构正是引起表面防污自洁的根本原因。研究表明,具有较大接触角和较小滚动角的超疏水性表面结构为微米级及纳米级结构的双微观复合结构,且这种结构直接影响水滴的运动趋势。超疏水表面的结构通常采用两种方法。一是在疏水材料表面上构建微观结构,二是在粗糙表面上修饰低表面能物质,由于降低表面自由能在技术上容易实现,因此超疏水表面制备技术的关键在于构建合适的表面微细结构。当前,一报道的超疏水表面制备技术主要有溶胶凝胶法、模板法、自组装法及化学刻蚀法。二、在日常生活中的应用空调夏天制冷时,换热器上会产生大量冷凝水,需要专门的排水管排到室外,这不仅降低了空调的能效比,还容易出现漏水现象,更为严重的会造成室内的空气湿度不断减小,使人们生活、工作的环境恶化。同样,冬天空调制热时,室外机换热器会结霜,为了除霜不得不经常停掉空调,这不仅浪费电能不利于制热,还容易出现各种故障。东南大学化工系陈志明教授研究发现,空调换热器的表面用超疏水材料处理后,不仅能避免上述问题的出现,还能明显降低空调器的噪声,延长空调器的使用寿命,且可节约空调器的设计成本。经过工业涂覆验证,其各项性能指标均达到了国际水平,可代替进口产品。超疏水材料的研究现状及应用摘要:超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。由于超疏水表面在自清洁表面、微流体系统和生物相容性等方面的潜在应用,有关超疏水表面的研究引起了极大的关注,本文简述了超疏水表面的制备方法,归纳了超疏水表面的应用,对超疏水表面研究的发展进行了展望。关键词:超疏水表面材料;微流体系统;表面制备方法;表面应用SuperhydrophobicmaterialsResearchandApplicationLiYongliang(JiangnanUniversity,CollegeofChemistryandMaterialsEngineeringJiangsuWuxi,China)Abstract:Superhydrophobicsurfacematerialwithawaterproof,anti-fouling,canreducetheviscosityofthefluidandotherexcellentfeatures,iscurrentlyoneofthehotfunctionalmaterials.Assuper-hydrophobicsurfaceintheself-cleaningsurfaces,microfluidicsystems,biocompatibilityandotherpotentialapplications,researchonsuper-hydrophobicsurfacecausedagreatdealofattention,thispaperoutlinesthesuper-hydrophobicsurfacepreparationmethods,summarizedthesuper-hydrophobicsurfaceapplicationofresearchforthedevelopmentofsuper-hydrophobicsurfaceswerediscussed.Keywords:Superhydrophobicsurfacematerial;Microfluidicsystems;Surfacepreparationmethods;Surfaceapplication近年来,植物叶表面的超疏水现象引起了人们的关注。所谓植物超疏水能力,就是植物叶面具有显著的疏水,脱附,防粘,自清洁功能等。随着科学的发展,各种疏水表面的设计和应用成为研究的热点问题之一。一般认为水滴接触角大于150的表面称为超疏水表面。自然界里有很多动植物表面都具有高疏水性和自洁功能,例如荷叶和水稻叶表面,其表面水的接触角都高达160以上,滚动角小于3。超疏水表面的制备通常包括粗糙表面的制备和使用低表面能物质对粗糙表面进行修饰这两个步骤。随着实验技术的不断革新,一些添加剂、助剂的使用,使得制备工艺进一步完善,进而得到了一些简单、可操作性强且产出成品性能良好的制备方法。近年来,超疏水表面凭借其特有的自清洁性及良好的生物相容性,受到了更加广泛的关注。由于超疏水材料独特的表面特性,使其可广泛应用于防水、防污、自清洁、流体减阻、抑菌等领域,因此超疏水材料在现实生产和生活中具有广阔的应用前景。近年来,超疏水性表面的研究已成为比较活跃的研究课题之一,这对制备新的高性能的功能材料表面有重要的作用。1超疏水材料的表面特征润湿性是指液体与固体表面接触时,液体可以渐渐渗入或附着在固体表面上,是固体表面的重要特征之一,这种特征由固体表面的化学组成及微观结构共同决定。接触角和滚动角是评价固体表面润湿性的重要参数,理论上疏水表面既要有较大的接触角,又要有较小的滚动角。超疏水性表面一般是指与水的接触角大于150,而滚动角小于10的表面,这样的表面具有防雪、防污染、抗氧化及防止电流传导等特性。植物叶子表面有许多丛生的放射状微茸毛,该微茸毛尖端极易亲水,入水后能瞬间锁定水分子,使叶片表层到茸毛尖端之间形成了一薄层空气膜,从而避免叶片与水直接接触.Barthlott研究发现,这种微茸毛由乳突及蜡状物构成,其为微米结构。中科院研究员江雷研究发现,乳突为纳米结构,这种纳米与微米相结合的双微观结构正是引起表面防污自洁的根本原因。研究表明,具有较大接触角和较小滚动角的超疏水性表面结构为微米级及纳米级结构的双微观复合结构,且这种结构直接影响水滴的运动趋势。超疏水表面的结构通常采用两种方法,一是在疏水材料表面上构建微观结构,二是在粗糙表面上修饰低表面能物质。由于降低表面自由能在技术上容易实现,因此超疏水表面制备技术的关键在于构建合适的表面微细结构。当前,已报道的超疏水表面制备技术主要有溶胶一凝胶法、模板法、自组装法及化学刻蚀法等。2超疏水材料表面的制备方法相分离方法制备超疏水材料将本体聚合制备的聚苯乙烯溶于四氢呋喃,然后向该溶液中滴加乙醇来引发相分离,通过控制乙醇的含量来控制相分离的程度,从而制备出表面结构可控的聚苯乙烯薄膜。科学家发现向聚丙烯的溶液中滴加适量的不良溶剂,会增加聚丙烯图层的表面粗糙度,这是因为由于不良溶剂的加入导致了聚丙烯溶液的相分离。因此向PS的THF溶液中滴加适量的PS的不良溶剂乙醇,会导致PS溶液的相分离,从而制备出表面结构粗糙的材料表面。并且乙醇的加入量影响着相分离的程度,进而影响着PS薄膜的表面粗糙程度。相分离过程发生在涂膜后,随着不良溶剂乙醇的挥发,在溶液中大量积聚的PS分子为了减少表面能自发的形成小球,有的小球之间会团聚形成大球。从结构分析,材料表面就形成了微纳双重结构。通过实验发现乙醇的浓度在49左右时接触角达到最大值1516。乙醇浓度较小时,相分离程度不充分,只形成小球无大球。乙醇浓度较大时,材料表面只形成大球而无小球。因此,适量的乙醇浓度,才能使材料表面形成良好的微纳双重结构,从而得到性能优异的超疏水材料。模板印刷法Sun等使用荷叶作为原始模板得到PDMS的凹模板,再使用该凹模板得到PDMS凸模板,该凸模板是荷叶的复制品,它与荷叶有同样的表面结构,因此表现出良好的超疏水性和很低的滚动角。该工艺类似于“印刷”,因此称为模板印刷法。Lee等用金属镍来代替PDMS,获得竹叶的凹模板。再在金属镍凹模板上使用紫外光固化的高分子材料复制,得到类似竹叶的复制品,该复制品具有超疏水能力。金属镍模板更耐磨、刚性更好、更易准确复制。在Lee的另外一篇文章中还有更多的例子。另外,Lai等通过光催化印刷法在TiO2纳米管膜上获得超亲水超疏水的方法也很有价值。模板印刷法是一种简洁、有效、准确、便宜、可大面积复制的制备方法。有望成为实用化制备超疏水材料的重要方法。电纺法江雷等通过一种简单的电纺技术,将溶于DMF溶剂中的PS制成具有多孔微球与纳米纤维复合结构的超疏水薄膜。其中多孔微球对超疏水性能起主要作用,纳米纤维起固定多孔微球的作用,该膜的WCA达到。Kang等也采用该法制备了PS超疏水膜。Ma等通过电纺法得到PS-g-PDMS和PS共纺的无纺布。由于PDMS在纤维表面富集,并且纤维尺寸为150400nm,因此,该无纺布WCA可达到163。该纤维透气性好、柔韧、超疏水等优点使它在纺织和生物领域有很大的应用价值。具有超疏水性的纤维在服装或无纺布方面有很大的潜在应用价值,电纺法无疑是一种很有潜力的方法。溶胶-凝胶法溶胶-凝胶法就是用含有高化学活性组份的化合物作前驱体进行水解得到溶胶后使其发生缩合反应,在溶液中形成稳定的凝胶,最后干燥凝胶。溶剂去除后,有时留下一些微纳米孔,这些微纳米孔结构赋予材料某些特殊性能,包括超疏水性。如有机硅气凝胶,由于孔结构发达,使它具有非常高的比表面积、已知材料中最低的密度、非常低的导热系数以及其他特性,因此它被称为“第四代材料”。有些方法制备的有机硅气凝胶还具有超疏水功能。如Venkateswara等使用甲基三甲氧基硅烷(MTMS)通过超临界干燥法制备了柔韧的硅气凝胶,WCA可以高达164。该硅气凝胶表面有丰富的-CH3基团和数量巨大的纳米级孔洞具有超疏水功能。调整工艺,WCA甚至可以高达173溶胶-凝胶法对于无机超疏水材料如ZnO、TiO2和Al2O3的制备具有一定的优势,但存在着工艺路线较长、有溶剂污染和成本较高等缺点。模板挤压法模板挤压法就是使用孔径接近纳米级的多孔氧化铝膜作为模板,将溶解于溶剂的高分子滴于其上,干燥后得到超疏水表面。冯琳等通过模板挤压法用亲水性聚乙烯醇材料制备了超疏水表面,接触角可以达到171.2。这可能是由于聚乙烯醇分子在纳米结构上发生重排,使得疏水烷基基团向外,亲水羟基基团向内并形成分子间氢键,体系表面能降低造成的。金美华等通过模板挤压法制备了超疏水阵列聚苯乙烯纳米管膜。该膜不但有超疏水特性,还具有对水超强的高粘滞力,甚至水滴完全反转都不掉落,类似“壁虎脚”。模板挤压法效果好、工艺较简单,但如何获得价格便宜、尺寸大并且性能可靠的模板是关键。激光和等离子体刻蚀法Khorasani等在室温环境下用CO2脉冲激光处理聚二甲基硅氧烷(PDMS),其表面的WCA高达175。可能的原因为在激光处理后,PDMS表面产生多孔结构,PDM的分子链排列规整。Fresnais等在氧气气氛下用等离子处理LDPE膜,然后再在CF4气氛下用等离子处理,获得透明度高的超疏水LDPE膜。另外,在Teshima和Lacro
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号