资源预览内容
第1页 / 共29页
第2页 / 共29页
第3页 / 共29页
第4页 / 共29页
第5页 / 共29页
第6页 / 共29页
第7页 / 共29页
第8页 / 共29页
第9页 / 共29页
第10页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2.8 函数与方程,知识梳理,考点自测,1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(xD),把使 成立的实数x叫做函数y=f(x)(xD)的零点. (2)与函数零点有关的等价关系 方程f(x)=0有实数根函数y=f(x)的图象与 有交点函数y=f(x)有 . (3)函数零点的判定(零点存在性定理),f(x)=0,x轴,零点,连续不断的,f(a)f(b)0,f(x0)=0,知识梳理,考点自测,2.二次函数y=ax2+bx+c(a0)的图象与零点的关系,(x1,0),(x2,0),(x1,0),2,1,0,知识梳理,考点自测,3.二分法 函数y=f(x)的图象在区间a,b上连续不断,且 ,通过不断地把函数f(x)的零点所在的区间 ,使区间的两个端点逐步逼近 ,进而得到零点近似值的方法叫做二分法.,f(a)f(b)0,一分为二,零点,知识梳理,考点自测,知识梳理,考点自测,1.判断下列结论是否正确,正确的画“”,错误的画“”. (1)函数f(x)=x2-1的零点是(-1,0)和(1,0). ( ) (2)二次函数y=ax2+bx+c(a0)在b2-4ac0时没有零点. ( ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值. ( ) (4)已知函数f(x)在(a,b)内图象连续且单调,若f(a)f(b)0,则函数f(x)在a,b上有且只有一个零点. ( ) (5)函数y=2sin x-1的零点有无数多个. ( ),知识梳理,考点自测,2.(教材思考改编P86)已知函数y=x2-2x+m无零点,则m的取值范围为( ) A.m1 D.m-1,C,解析:由=(-2)2-4m1,故选C.,3.(教材例题改编P88例1)函数f(x)=ln x+2x-6的零点所在的区间是( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4),C,解析: y=ln x与y=2x-6在(0,+)内都是增函数, f(x)=ln x+2x-6在(0,+)内是增函数. 又f(1)=-4,f(2)=ln 2-20,零点在区间(2,3)内,故选C.,知识梳理,考点自测,4.(教材例题改编P90例2)已知方程2x+3x=k的解都在1,2)内,则k的取值范围为( ) A.5k10 B.5k10 C.5k10 D.5k10,A,解析:令函数f(x)=2x+3x-k,则f(x)在R上是增函数. 当方程2x+3x=k的解在(1,2)内时,f(1)f(2)0, 即(5-k)(10-k)0,解得5k10. 当f(1)=0时,k=5,故选A.,知识梳理,考点自测,5.已知函数y=(k-8)x2+x+1至多有一个零点,则k的取值范围为 .,考点一,考点二,考点三,判断函数零点所在的区间 例1(1)(2017辽宁抚顺重点校一模,文5)函数 的零点所在的区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4) (2)已知定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有f(f(x)-ln x)=e+1,若x0是方程f(x)-f(x)=e的一个解,则x0所在的区间可能是( ) A.(0,1) B.(e-1,1) C.(0,e-1) D.(1,e),B,D,考点一,考点二,考点三,考点一,考点二,考点三,思考判断函数y=f(x)在某个区间上是否存在零点的常用方法有哪些? 解题心得判断函数y=f(x)在某个区间上是否存在零点,常用以下方法: (1)解方程:当对应方程易解时,可通过解方程,观察方程是否有根落在给定区间上. (2)利用函数零点的存在性定理进行判断:首先看函数y=f(x)在区间a,b上的图象是否连续,然后看是否有f(a)f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点;若没有,则不一定有零点. (3)通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.,考点一,考点二,考点三,对点训练1(1)(2017湖北四地七校联盟高三联考)函数f(x)=x+log2x的零点所在的区间为( ),(2)(2017浙江温州模拟)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g(x)=ex+f(x)的零点所在的大致区间是 ( ) A.(-1,0) B.(0,1) C.(1,2) D.(2,3) (3)(2017浙江嘉兴模拟)已知函数y=x3与 的图象的交点为(x0,y0).若x0(n,n+1),nN,则x0所在的区间是 .,A,B,(1,2),考点一,考点二,考点三,考点一,考点二,考点三,考点一,考点二,考点三,判断函数零点的个数 例2(1)函数f(x)=2x|log0.5x|-1的零点个数为 ( ) A.1 B.2 C.3 D.4 (2)已知f(x)是定义在R上的偶函数,且对于任意的x0,+),满足f(x+2)=f(x),若当x0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间-2,4上的零点个数为 .,B,7,考点一,考点二,考点三,考点一,考点二,考点三,(2)由题意作出y=f(x)在区间-2,4上的图象如图所示,由图可知它与直线y=1的交点共有7个,故函数y=f(x)-1在区间-2,4上的零点个数为7.,考点一,考点二,考点三,思考判断函数零点个数的常用方法有哪些? 解题心得判断函数零点个数的方法: (1)解方程法:若对应方程f(x)=0可解时,通过解方程,有几个解就有几个零点. (2)零点存在性定理法:利用定理不仅要判断函数的图象在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点. (3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,再看其交点的个数,其中交点的个数就是函数零点的个数.,考点一,考点二,考点三,对点训练2(1)函数f(x)=sin(cos x)在区间0,2上的零点个数是( ) A.3 B.4 C.5 D.6 (2)(2017河北张家口4月模拟,文14)已知函数f(x)是定义在R上的奇函数,且当x(0,+)时,f(x)=2 017x+log2 017x,则f(x)在R上的零点的个数为 .,C,3,考点一,考点二,考点三,考点一,考点二,考点三,函数零点的应用(多考向) 考向1 已知函数零点所在区间求参数 例3(2017江苏启东检测)若函数f(x)=log2x+x-k(kZ)在区间(2,3)内有零点,则k= .,4,解析:由题意可得f(2)f(3)0,即(log22+2-k)(log23+3-k)0,整理得(3-k)(log23+3-k)0,解得3k3+log23,而43+log235.因为kZ,所以k=4.,思考已知函数零点所在的区间,怎样求参数的取值范围?,考点一,考点二,考点三,考向2 已知函数零点个数求参数问题,由4-2x=0,得x=2; 由x2+2x-3=0,得x=-3,x=1. 又函数g(x)恰有三个不同的零点, 方程g(x)=0的实根2,-3和1都在相应范围上,即1m2. 故实数m的取值范围是(1,2.,考点一,考点二,考点三,考点一,考点二,考点三,思考已知函数有零点(方程有根),求参数的取值范围常用的方法有哪些? 解题心得已知函数有零点(方程有根),求参数的取值范围常用的方法: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,再转化成求函数值域问题加以解决. (3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,再数形结合求解.,考点一,考点二,考点三,对点训练3(1)(2017湖北武昌1月调研,文5)已知函数f(x)=2ax-a+3,若x0(-1,1),f(x0)=0,则实数a的取值范围是( ) A.(-,-3)(1,+) B.(-,-3) C.(-3,1) D.(1,+) (2)(2017天津河东区二模)已知函数 若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是( ) A.-1,1) B.-1,2) C.-2,2) D.0,2,A,B,考点一,考点二,考点三,解析: (1)函数f(x)=2ax-a+3,若x0(-1,1),f(x0)=0,可得(-3a+3)(a+3)0,解得a(-,-3)(1,+). (2)由题意x2+5x+2=2x,可得x2+3x+2=0, 解得x=-1,x=-2,由y=x+2与y=2x解得x=2,y=4. 函数y=f(x)与y=2x的图象如图所示. 函数g(x)=f(x)-2x恰有三个不同的零点,则实数a的取值范围是-1a2. 故选B.,考点一,考点二,考点三,1.函数零点的常用判定方法: (1)零点存在性定理;(2)数形结合;(3)解方程f(x)=0. 2.研究方程f(x)=g(x)的解,实质就是研究G(x)=f(x)-g(x)的零点. 3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.,1.函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图象与x轴交点的横坐标. 2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象等综合考虑.,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号