资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
第9页 / 共33页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
从不放松对“三个代表”等党和国家政治方针的学习,每天收看听闻,关心国家大事,积极参加党组织的各种活动,在工作一年后,荣誉地为由一名中国共产党预备党员成为正式党员,实现了我多年的愿望二元一次方程组【学习目标】1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。【学习重点】 1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。【学习难点】检验一对数是否是某个二元一次方程(组)的解;【自主学习】-二元一次方程概念二元一次方程的概念1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队为了争取较好名次想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?思考:以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?_场数_场数总场数; _积分_积分总积分,这两个条件可以用方程xy=22,2xy=40 表示。观察:这两个方程有什么特点?与一元一次方程有什么不同?归纳:定义_叫做二元一次方程2.二元一次方程的左边和右边都应是整式二元一次方程的一般形式:ax + by + c = 0 (其中a0、b0 且a、b、c为常数)注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。二元一次方程的解:使二元一次方程两边的值_的两个未知数的_叫做二元一次方程的解。【合作探究】-什么是二元一次方程组和它的解 1. 已知、都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。 2、把3(x+5)=5(y-1)+3化成ax+by=c的形式为_。、下列式子3x+2y-1;2(2-x)+3y+5=0;3x-4y=z;x+xy=1;y+3y=5x;4x-y=0;2x-3y+1=2x+5;+=7中;是二元一次方程的有_(填序号)、若xm-1+5y3n-2m=7是二元一次方程,则m=_,n=_。、已知是方程3x-my=1的一个解,则m=_。【达标测评】 (一)、精心选一选1下列方程组中,不是二元一次方程组的是()若方程有一解则的值等于()-,C, (二)、细心填一填1买支铅笔和本练习本,其中铅笔每支元,练习本每本元,共需用元列出关于的二元一次方程为_;若再买同样的铅笔支和同样的练习本本,价钱是元,列出关于的二元一次方程为_;若铅笔每支元,则练习本每本_元2在二元一次方程中,当时,_3已知是二元一次方程的一个解,则_(三)、耐心做一做1、已知二元一次方程2x-3y=-15.用含y的式子表示x; 用含x的式子表示y. 2、已知(y-3)2=0,求x+y的值。 3、 若是方程2x+y=2的解,求8a+4b-3的值。课题:二元一次方程组2:14 【学习目标】会运用代入消元法解二元一次方程组【学习重难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧【自主学习】 一、基本概念1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做_。2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做_,简称_。3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用_的式子表示出来;第二步是:用这个式子代入_,从而消去一个未知数,化二元一次方程组为一元一次方程【合作探究】1、将方程5x-6y=12变形:若用含y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_ 。2、用代人法解方程组,把_代人_,可以消去未知数_,方程变为: 3、若方程y=1-x的解也是方程3x+2y=5的解,则x=_,y=_。4、若的解,则a=_,b=_。5、已知方程组的解也是方程组的解,则a=_,b=_ ,3a+2b=_。6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_,q=_ 。7、用代入法解下列方程组: 【展示提升】 1. 若mn5(2m3n5)20,求(mn)2的值2.已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m【达标测评】 1、方程组的解是( )A. B. C. D.2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=_,b=_。3、用代入法解下列方程组 4、如果(5a-7b+3)2+=0,求a与b的值。5、若方程组与有公共的解,求a,b.6、当k=_时,方程组的解中x与y的值相等。7、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_,y=_;当x、y相等时,x=_,y= _ 。8、对于关于x、y的方程y=kx+b,k比b大1,且当x=时,y=,则k、b的值分别是( )A. B.2,1 C.-2,1 D.-1,0【教学反思】课题:二元一次方程组3:15【学习目标】(1)会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。(2)通过探求二元一次方程组的解法,经历用加减法把 “二元”化为“一元”的过程,体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想.【学习重、难点】1、用加减法解二元一次方程组. 2、两个方程相减消元时,对被减的方程各项符号要做变号处理。【自主学习】 一、知识链接:怎样解下面二元一次方程组呢?二、 自学导引1、观察上面的方程组:未知数y的系数 ,若把方程(1)和方程(2)相加可得:(注:左边和左边相加,右边和右边相加。)( )+( )= + 12x=24发现二:如果未知数的系数互为 则两个方程左右两边分别 可以消去一个未知数.未知数x的系数 ,若把方程(1)和方程(2)相减可得:(注:左边和左边相减,右边和右边相减。)( )-( )= - 14y=14发现一:如果未知数的系数相同则两个方程左右两边分别相减也可消去一个未知数.归纳:两个二元一次方程组中,同一个未知数的系数 或 时,把这两个方程的两边分别 或 ,就能消去这个未知数,得到一个 方程,这种方法就叫做加减消元法。提示:观察方程组:方程组中方程、未知数 (x或y)的系数是相同的,可通过 ( 加或减)的方法消去 (x或y)。2、用加减消元法解下列方程组 规范解答:由+得: -第一步:加减 将 代入,得 -第二步:求解 所以原方程组的解为-第三步:写解【合作探究】观察方程组:方程组中方程、未知数 (x或y)的系数是相反的,可通过 ( 加或减)的方法消去 (x或y)。用加减消元法解方程组 【达标测评】 练习1:解下列方程【教学反思】课题:二元一次方程组4:16【学习目标】(1)学会使用方程变形,再用加减消元法解二元一次方程组.(2)解决问题的一个基本思想:化归,即将“未知”化为“已知”,将“复杂”转为“简单”。【学习重、难点】1、用加减消元法解系数绝对值不相等的二元一次方程组2、使方程变形为较恰当的形式,然后加减消元【自主学习】一、回忆、复习1、方程组中,方程(1)的y的系数与方程(2)的y的系数 ,由+可消去未知数 ,从而得到 ,把x= 代入 中,可得y= .2、方程组中,方程(1)的m的系数与方程(2)的m的系数 ,由( )( )可消去未知数 .3 、用加减法解方程组 4、用加减消元法解二元一次方程组的基本思路仍然是 消元 . 两个二元一次方程中,同一个未知数的系数_或_ 时,把这两个方程的两边分别_或_,就能_这个未知数,得到一个_方程,这种方法叫做_,简称_。【合作探究】1、下面的方程组直接用(1)+(2),或(1)-(2)还能消去某个未知数吗?仍用加减消元法如何消去其中一个未知数?两边都乘以2,得到: (3)观察:(2)和(3)中 的系数 ,将这两个方程的两边分别 ,就能得到一元一次方程 。基本思路:将将原方程组的两个方程化为有一个未知数的系数相同或者相反的两个方程,再将两个方程两边分
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号