资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
第9页 / 共19页
第10页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
五峰土家族自治县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想2 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)3 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD4 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或85 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:16 已知a=5,b=log2,c=log5,则( )AbcaBabcCacbDbac7 九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A钱B钱C钱D钱8 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a29 已知点M的球坐标为(1,),则它的直角坐标为( )A(1,)B(,)C(,)D(,)10下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤11已知全集I=1,2,3,4,5,6,A=1,2,3,4,B=3,4,5,6,那么I(AB)等于( )A3,4B1,2,5,6C1,2,3,4,5,6D12集合的真子集共有( )A个 B个 C个 D个二、填空题13袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为14在各项为正数的等比数列an中,若a6=a5+2a4,则公比q=15某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)16数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_17等比数列an的前n项和为Sn,已知S3=a1+3a2,则公比q=18若实数满足,则的最小值为 三、解答题19(本题满分14分)已知函数.(1)若在上是单调递减函数,求实数的取值范围;(2)记,并设是函数的两个极值点,若,求的最小值.20已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围21【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形,其设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点是线段上异于的一点、点是线段上的一点),使得点落在线段上.(1)当点与点重合时,求面积;(2)经观察测量,发现当最小时,LOGO最美观,试求此时LOGO图案的面积.22(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上一点,且成等差数列(1)求椭圆的标准方程;、(2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由23已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 24如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 五峰土家族自治县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】2 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用3 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题4 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D5 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D6 【答案】C【解析】解:a=51,b=log2log5=c0,acb故选:C7 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,a+d,a+2d,则由题意可知,a2d+ad=a+a+d+a+2d,即a=6d,又a2d+ad+a+a+d+a+2d=5a=5,a=1,则a2d=a2=故选:B8 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题9 【答案】B【解析】解:设点M的直角坐标为(x,y,z),点M的球坐标为(1,),x=sincos=,y=sinsin=,z=cos=M的直角坐标为(,)故选:B【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,来确定,其中r为原点O与点P间的距离,为有向线段OP与z轴正向的夹角,为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影这样的三个数r,叫做点P的球面坐标,显然,这里r,的变化范围为r0,+),0,2,0,10【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题11【答案】B【解析】解:A=1,2,3,4,B=3,4,5,6,AB=3,4,全集I=1,2,3,4,5,6,I(AB)=1,2,5,6,故选B【点评】本题考查交、并、补集的混合运算,是基础题解题时要认真审题,仔细解答,注意合理地进行等价转化12【答案】C【解析】考点:真子集的概念.二、填空题13【答案】 【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2再求“第一次摸到红球且第二次也摸到红球”的概率为P=,根据条件概率公式,得:P2=,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题看准确事件之间的联系,正确运用公式,是解决本题的关键14【答案】2 【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2q2=0,解得q=2或q=1,又各项为正数,则q=2,故答案为:2【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题15【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号