资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
加查县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D62 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D3 在复平面内,复数所对应的点为,是虚数单位,则( )A B C D 4 已知在ABC中,a=,b=,B=60,那么角C等于( )A135B90C45D755 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x16 已知向量,若,则实数( )A. B.C. D. 【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力7 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力8 圆上的点到直线的距离最大值是( )A B C D9 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则10如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D11如图,已知平面=,是直线上的两点,是平面内的两点,且,是平面上的一动点,且有,则四棱锥体积的最大值是()A B C D12已知平面、和直线m,给出条件:m;m;m;为使m,应选择下面四个选项中的( )ABCD二、填空题13若“xa”是“x22x30”的充分不必要条件,则a的取值范围为14观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为15抛物线的准线与双曲线的两条渐近线所围成的三角形面积为_16如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的周长为 111117某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .18由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为三、解答题19已知a0,a1,命题p:“函数f(x)=ax在(0,+)上单调递减”,命题q:“关于x的不等式x22ax+0对一切的xR恒成立”,若pq为假命题,pq为真命题,求实数a的取值范围20(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围21啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 22已知p:,q:x2(a2+1)x+a20,若p是q的必要不充分条件,求实数a的取值范围23(本小题满分12分)设,满足(1)求的值;(2)求的值24已知和均为给定的大于1的自然数,设集合,.,集合.。,.,.(1)当,时,用列举法表示集合;(2)设、,.。,.。,其中、,.,.证明:若,则.加查县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B2 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.3 【答案】D 【解析】解析:本题考查复数的点的表示与复数的乘法运算,选D4 【答案】D【解析】解:由正弦定理知=,sinA=,ab,AB,A=45,C=180AB=75,故选:D5 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B6 【答案】B【解析】由知,解得,故选B.7 【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C8 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 19 【答案】111【解析】考点:线线,线面,面面的位置关系10【答案】C【解析】考点:平面图形的直观图.11【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。因为,所以PB=2PA。作于M,则。令AM=t,则所以即为四棱锥的高,又底面为直角梯形,所以故答案为:A12【答案】D【解析】解:当m,时,根据线面平行的定义,m与没有公共点,有m,其他条件无法推出m,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用二、填空题13【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键14【答案】n+(n+1)+(n+2)+(3n2)=(2n1)2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题15【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:16【答案】【解析】考点:平面图形的直观图17【答案】12【解析】考点:分层抽样18【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题三、解答题19【答案】 【解析】解:若p为真,则0a1;若q为真,则=4a210,得,又a0,a1,因为pq为假命题,pq为真命题,所以p,q中必有一个为真,且另一个为假当p为真,q为假时,由;当p为假,q为真时,无解 综上,a的取值范围是【点评】1求解本题时,应注意大前提“a0,a1”,a的取值范围是在此条件下进行的20【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力()设直线:与半圆相切时 ,(舍去)设点,故直线的斜率的取值范围为. 21【答案】 【解析】解:()根据直线l的参数方程为(t为参数),消去参数,得x+y=0,直线l的直角坐标方程为x+y=0,圆C的极坐标方程为p2+2psin(+)+1=r2(r0)(x+)2+(y+)2=r2(r0)圆C的直角坐标方程为(x+)2+(y+)2=r2(r0)()圆心C(,),半径为r,(5分)圆心C到直线x+y=0的距离为d=2,又圆C上的点到直线l的最大距离为3,即d+r=3,r=32=1【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识 22【答案】 【解析】解:由p: 1x2,方程x2(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|1,则q:1xa2,此时应满足a22,解得1|a|,当|a|=1,q:x,满足条件,当|a|
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号