资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
太仆寺旗三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个2 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD213 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D34 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D35 函数f(x)=tan(2x+),则( )A函数最小正周期为,且在(,)是增函数B函数最小正周期为,且在(,)是减函数C函数最小正周期为,且在(,)是减函数D函数最小正周期为,且在(,)是增函数6 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D97 为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位8 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD39 已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D410德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个11复数z=在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限12集合A=1,2,3,集合B=1,1,3,集合S=AB,则集合S的子集有( )A2个B3 个C4 个D8个二、填空题13(文科)与直线垂直的直线的倾斜角为_14设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)15在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是16【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为_17不等式的解集为18已知圆O:x2+y2=1和双曲线C:=1(a0,b0)若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则=三、解答题19如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD20(本小题满分12分)如图, 矩形的两条对角线相交于点,边所在直线的方程为点在边所在直线上.(1)求边所在直线的方程;(2)求矩形外接圆的方程. 21在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标22已知函数,(1)判断的单调性并且证明;(2)求在区间上的最大值和最小值23已知f()=,(1)化简f(); (2)若f()=2,求sincos+cos2的值24已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围太仆寺旗三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B2 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B3 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题4 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B5 【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+(,),函数f(x)=tan(2x+)单调递增,故选:D6 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B7 【答案】A【解析】解:由于函数y=sin(3x+)=sin3(x+)的图象向右平移个单位,即可得到y=sin3(x+)= sin3x的图象,故选:A【点评】本题主要考查函数y=Asin(x+)的图象平移变换,属于中档题8 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题9 【答案】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目10【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题11【答案】A【解析】解:z=+i,复数z在复平面上对应的点位于第一象限故选A【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具12【答案】C【解析】解:集合A=1,2,3,集合B=1,1,3,集合S=AB=1,3,则集合S的子集有22=4个,故选:C【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础二、填空题13【答案】【解析】试题分析:依题意可知所求直线的斜率为,故倾斜角为.考点:直线方程与倾斜角 14【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号