资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
大通区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=x2+,则f(3)=( )A8B9C11D102 “为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要3 设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件4 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力5 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D306 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 已知平面向量与的夹角为,且,则( )A B C D 8 已知函数f(x)=sin2(x)(0)的周期为,若将其图象沿x轴向右平移a个单位(a0),所得图象关于原点对称,则实数a的最小值为( )ABCD9 若集合A=x|2x1,B=x|0x2,则集合AB=( )Ax|1x1Bx|2x1Cx|2x2Dx|0x110某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.A B C D【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力11若,则的值为( )A B C. D12在平面直角坐标系中,直线y=x与圆x2+y28x+4=0交于A、B两点,则线段AB的长为( )A4B4C2D2二、填空题13设变量满足约束条件,则的最小值是,则实数_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力14若log2(2m3)=0,则elnm1=15在中,为的中点,则的长为_.16若双曲线的方程为4x29y2=36,则其实轴长为17函数y=1(xR)的最大值与最小值的和为2 18对任意实数x,不等式ax22ax40恒成立,则实数a的取值范围是三、解答题19(本题满分13分)已知函数.(1)当时,求的极值;(2)若在区间上是增函数,求实数的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值21已知椭圆C: +=1(ab0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点()求椭圆C的方程;()求F2PQ面积的最小值22记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 23(本小题满分12分)已知等差数列满足:(),该数列的前三项分别加上1,1,3后成等比数列,且.(1)求数列,的通项公式;(2)求数列的前项和.24(本小题满分10分)选修4-5:不等式选讲已知函数,.(1)解不等式;(2)对任意的实数,不等式恒成立,求实数的最小值.111大通区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:函数=,f(3)=32+2=11故选C2 【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.3 【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键4 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C5 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题6 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题7 【答案】C考点:平面向量数量积的运算8 【答案】D【解析】解:由函数f(x)=sin2(x)=cos2x (0)的周期为=,可得=1,故f(x)=cos2x若将其图象沿x轴向右平移a个单位(a0),可得y=cos2(xa)=cos(2x2a)的图象;再根据所得图象关于原点对称,可得2a=k+,a=+,kZ则实数a的最小值为故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(x+)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题9 【答案】D【解析】解:AB=x|2x1x|0x2=x|0x1故选D10【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有种. 共有24种. 选A.11【答案】B【解析】考点:函数值的求解.12【答案】A【解析】解:圆x2+y28x+4=0,即圆(x4)2+y2 =12,圆心(4,0)、半径等于2由于弦心距d=2,弦长为2=4,故选:A【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题二、填空题13【答案】【解析】14【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用15【答案】【解析】 考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).16【答案】6 【解析】解:双曲线的方程为4x29y2=36,即为:=1,可得a=3,则双曲线的实轴长为2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题17【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键18【答案】(4,0 【解析】解:当a=0时,不等式等价为40,满足条件;当a0时,要使不等式ax22ax40恒成立,则满足,即,解得4a0,综上:a的取值范围是(4,0故答案为:(4,0【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论三、解答题19【答案】【解析】(1)函数的定义域为,因为,当时,则.令,得.2分所以的变化情况如下表:0极小值所以当时,的极小值为,函数无极大值.5分20【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,得x24kx4=0,由根与系数的关系知,|AC|=4(1+k2),因为ACBD,所以BD的斜率为,从而BD的方程为y=x+1同理可求得|BD|=4(1+),SABCD=|AC|BD|=8(2+k2+)32当k=1时,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号