资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
源城区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%2 设是奇函数,且在内是增函数,又,则的解集是( )A B C D 3 以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )ABCD4 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱柱的侧面,绕行两周到达点的最短路线的长为( )A B C D5 直线在平面外是指( )A直线与平面没有公共点B直线与平面相交C直线与平面平行D直线与平面最多只有一个公共点6 函数y=|a|x(a0且a1)的图象可能是( )ABCD7 数列an的首项a1=1,an+1=an+2n,则a5=( )AB20C21D318 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36种B18种C27种D24种9 已知全集I=1,2,3,4,5,6,A=1,2,3,4,B=3,4,5,6,那么I(AB)等于( )A3,4B1,2,5,6C1,2,3,4,5,6D10定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD11已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A1BCD12独立性检验中,假设H0:变量X与变量Y没有关系则在H0成立的情况下,估算概率P(K26.635)0.01表示的意义是( )A变量X与变量Y有关系的概率为1%B变量X与变量Y没有关系的概率为99%C变量X与变量Y有关系的概率为99%D变量X与变量Y没有关系的概率为99.9%二、填空题13若曲线f(x)=aex+bsinx(a,bR)在x=0处与直线y=1相切,则ba=14设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 15设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是16x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是17某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种18不等式恒成立,则实数的值是_.三、解答题19已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 20双曲线C:x2y2=2右支上的弦AB过右焦点F(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值若不存在,则说明理由21在数列an中,a1=1,an+1=1,bn=,其中nN*(1)求证:数列bn为等差数列;(2)设cn=bn+1(),数列cn的前n项和为Tn,求Tn;(3)证明:1+21(nN*) 22已知函数f(x)=,其中=(2cosx, sin2x),=(cosx,1),xR(1)求函数y=f(x)的单调递增区间;(2)在ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求ABC的面积23已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由24(1)已知f(x)的定义域为2,1,求函数f(3x1)的定义域;(2)已知f(2x+5)的定义域为1,4,求函数f(x)的定义域源城区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】2 【答案】B【解析】试题分析:因为为奇函数且,所以,又因为在区间上为增函数且,所以当时,当时,再根据奇函数图象关于原点对称可知:当时,当时,所以满足的的取值范围是:或。故选B。考点:1.函数的奇偶性;2.函数的单调性。3 【答案】D【解析】解:因为以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P=,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比4 【答案】D【解析】考点:多面体的表面上最短距离问题【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题5 【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,直线在平面外,则直线与平面最多只有一个公共点故选D6 【答案】D【解析】解:当|a|1时,函数为增函数,且过定点(0,1),因为011,故排除A,B当|a|1时且a0时,函数为减函数,且过定点(0,1),因为10,故排除C故选:D7 【答案】C【解析】解:由an+1=an+2n,得an+1an=2n,又a1=1,a5=(a5a4)+(a4a3)+(a3a2)+(a2a1)+a1=2(4+3+2+1)+1=21故选:C【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题8 【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分4种情况讨论,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33A22=12种情况,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C322=6种情况,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式9 【答案】B【解析】解:A=1,2,3,4,B=3,4,5,6,AB=3,4,全集I=1,2,3,4,5,6,I(AB)=1,2,5,6,故选B【点评】本题考查交、并、补集的混合运算,是基础题解题时要认真审题,仔细解答,注意合理地进行等价转化10【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B11【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D皆有可能,而1,故C不可能故选C【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键12【答案】C【解析】解:概率P(K26.635)0.01,两个变量有关系的可信度是10.01=99%,即两个变量有关系的概率是99%,故选C【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题二、填空题13【答案】2 【解析】解:f(x)=aex+bsinx的导数为f(x)=aex+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=1相切,可得a+b=0,且ae0+bsin0=a=1,解得a=1,b=1,则ba=2故答案为:214【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:15【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号