资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选高中模拟试卷边坝县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD2 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD3 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=24 已知函数,其中,对任意的都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )A B C D5 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是( )A(0,1)B(1,+)C(1,0)D(,1)6 复数的值是( )A B C D【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题7 (6a3)的最大值为( )A9BC3D8 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )A(1,1)B(0,3)C(,2)D(,0)9 点P是棱长为1的正方体ABCDA1B1C1D1的底面A1B1C1D1上一点,则的取值范围是( )A1,B,C1,0D,010下列命题中正确的是( )A若命题p为真命题,命题q为假命题,则命题“pq”为真命题B命题“若xy=0,则x=0”的否命题为:“若xy=0,则x0”C“”是“”的充分不必要条件D命题“xR,2x0”的否定是“”11四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为12已知数列为等差数列,为前项和,公差为,若,则的值为( )A B C D二、填空题13在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是14如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为15对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)16【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为_.17满足关系式2,3A1,2,3,4的集合A的个数是18已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 三、解答题19(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11120已知:函数f(x)=log2,g(x)=2ax+1a,又h(x)=f(x)+g(x)(1)当a=1时,求证:h(x)在x(1,+)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围21已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长22已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式23如图所示,两个全等的矩形和所在平面相交于,且,求证:平面24某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为,且各轮考核通过与否相互独立。(1)求甲通过该高校自主招生考试的概率;(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。记学生甲得到教育基金的金额为,求的分布列和数学期望。边坝县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D2 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式3 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置4 【答案】C【解析】试题分析:因为函数,对任意的都成立,所以,解得或,又因为,所以,在和两数间插入共个数,使之与,构成等比数列,两式相乘,根据等比数列的性质得,故选C. 考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.5 【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A6 【答案】【解析】7 【答案】B【解析】解:令f(a)=(3a)(a+6)=+,而且6a3,由此可得函数f(a)的最大值为,故(6a3)的最大值为=,故选B【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题8 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y化为y=2x+u,u相当于直线y=2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=32x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=32x上但不在阴影区域内,故不成立;故选D【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题9 【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系则点A(1,0,0),C1 (0,1,1),设点P的坐标为(x,y,z),则由题意可得 0x1,0y1,z=1=(1x,y,1),=(x,1y,0),=x(1x)y(1y)+0=x2x+y2y=+,由二次函数的性质可得,当x=y=时,取得最小值为;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是,0,故选D【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题10【答案】 D【解析】解:若命题p为真命题,命题q为假命题,则命题“pq”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy0,则x0”,故B不正确;“”“+2k,或,kZ”,“”“”,故“”是“”的必要不充分条件,故C不正确;命题“xR,2x0”的否定是“”,故D正确故选D【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答11【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.12【答案】B【解析】试题分析:若为等差数列,则为等差数列公差为, ,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.二、填空题13【答案】 【解析】解:由题设知C41p(1p)3C42p2(1p)2,解得p,0p1,故答案为:14【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题15【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号