资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第四节 矩、协方差矩阵,原点矩 中心矩 协方差矩阵 n 元正态分布的概率密度 小结 布置作业,一、 原点矩 中心矩,定义 设X和Y是随机变量,若,存在,称它为X的k阶原点矩,简称 k阶矩,存在,称它为X的k阶中心矩,可见,均值 E(X)是X一阶原点矩,方差D(X),是X的二阶中心矩。,协方差Cov(X,Y)是X和Y的二阶混合中心矩.,称它为 X 和 Y 的 k+L 阶混合(原点)矩.,称它为X 和 Y 的 k+L 阶混合中心矩.,可见,,二、协方差矩阵,将二维随机变量(X1,X2)的四个二阶中心矩,排成矩阵的形式:,称此矩阵为(X1,X2)的协方差矩阵.,类似定义n 维随机变量(X1,X2, ,Xn) 的协方差矩阵.,为(X1,X2, ,Xn) 的协方差矩阵,三、n 元正态分布的概率密度,f (x1,x2, ,xn),则称 X 服从 n 元正态分布.,其中C是(X1,X2, ,Xn) 的协方差矩阵.,|C|是它的行列式, 表示C的逆矩阵,,X 和 是 n 维列向量, 表示X 的转置.,设 =(X1,X2, ,Xn)是一个n维随机向量, 若它的概率密度为,n元正态分布的几条重要性质,1. X=(X1,X2, ,Xn)服从n元正态分布,若 X=(X1, X2 , , Xn) 服从 n 元正态分布,,Y1,Y2, ,Yk是Xj(j=1,2,n)的线性函数,,则 (Y1,Y2, ,Yk) 也服从多元正态分布.,2. 正态变量的线性变换不变性.,3. 设(X1,X2, ,Xn)服从n元正态分布,则,“X1,X2, ,Xn相互独立”,等价于,“X1,X2, ,Xn两两不相关”,例 设随机变量X和Y相互独立且XN(1,2), YN(0,1). 试求Z=2X-Y+3的概率密度.,故X 和Y 的联合分布为正态分布,X 和Y 的任意线性组合是正态分布.,解: XN(1,2),YN(0,1),且 X 与Y 独立,D(Z)=4D(X)+D(Y)=8+1=9,E(Z)=2E(X)-E(Y)+3=2+3=5,即 ZN(E(Z), D(Z),故 Z 的概率密度是,ZN(5, 32),四、小结,在这一节中我们学习了随机变量的原点矩和中心矩以及协方差矩阵 .,一般地 , 维随机变量的分布是不知道的 , 或者太复杂 , 以至于在数学上不易处理 , 因此在实际中协方差矩阵就显得重要了 .,五、 布置作业,一、填空题第1小题,概率论与数理统计作业(四),二、选择题第1、2小题,三、解答题第1、2、3、4小题,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号