资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选高中模拟试卷上饶市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数f(x)=Asin(x+)(A0,0,)的部分图象如图所示,则函数y=f(x)对应的解析式为( )ABCD2 命题“存在实数x,使x1”的否定是( )A对任意实数x,都有x1B不存在实数x,使x1C对任意实数x,都有x1D存在实数x,使x13 若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD4 函数f(x)=eln|x|+的大致图象为( )ABCD5 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D726 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,47 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD8 若函数f(x)=loga(2x2+x)(a0且a1)在区间(0,)内恒有f(x)0,则f(x)的单调递增区间为( )A(,)B(,+)C(0,+)D(,)9 已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,10定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)11下列图象中,不能作为函数y=f(x)的图象的是( )ABCD12对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个二、填空题13将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为14某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元15在数列中,则实数a=,b=16函数y=1(xR)的最大值与最小值的和为2 17已知圆,则其圆心坐标是_,的取值范围是_【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.18台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km三、解答题19(本小题满分12分)如图所示,已知平面,平面,为等边三角形,,为的中点.(1)求证:平面;(2)平面平面.20已知集合A=x|2x6,集合B=x|x3(1)求CR(AB);(2)若C=x|xa,且AC,求实数a的取值范围21证明:f(x)是周期为4的周期函数;(2)若f(x)=(0x1),求x5,4时,函数f(x)的解析式18已知函数f(x)=是奇函数22(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.23某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图()求分数在50,60)的频率及全班人数;()求分数在80,90)之间的频数,并计算频率分布直方图中80,90)间矩形的高;()若要从分数在80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在90,100)之间的概率24由四个不同的数字1,2,4,x组成无重复数字的三位数(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x上饶市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由函数的图象可得A=1, =,解得=2,再把点(,1)代入函数的解析式可得 sin(2+)=1,结合,可得=,故有,故选:A2 【答案】C【解析】解:命题“存在实数x,使x1”的否定是“对任意实数x,都有x1”故选C3 【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力4 【答案】C【解析】解:f(x)=eln|x|+f(x)=eln|x|f(x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x0+时,y+,故排除B 故选:C5 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.6 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题7 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题8 【答案】D【解析】解:当x(0,)时,2x2+x(0,1),0a1,函数f(x)=loga(2x2+x)(a0,a1)由f(x)=logat和t=2x2+x复合而成,0a1时,f(x)=logat在(0,+)上是减函数,所以只要求t=2x2+x0的单调递减区间t=2x2+x0的单调递减区间为(,),f(x)的单调增区间为(,),故选:D【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件9 【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D10【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题11【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性12【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B二、填空题13【答案】4+ 【解析】解:作出正四棱柱的对角面如图,底面边长为6,BC=,球O的半径为3,球O1 的半径为1,则,在RtOMO1中,OO1=4,=,正四棱柱容器的高的最小值为4+故答案为:4+【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题14【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错15【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号