资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选高中模拟试卷阳西县高中2018-2019学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 双曲线:的渐近线方程和离心率分别是( )ABCD2 已知向量=(1,3),=(x,2),且,则x=( )ABCD3 函数y=ax+2(a0且a1)图象一定过点( )A(0,1)B(0,3)C(1,0)D(3,0)4 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD5 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D16 双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D7 如图RtOAB是一平面图形的直观图,斜边OB=2,则这个平面图形的面积是( )AB1CD8 设集合M=x|x22x30,N=x|log2x0,则MN等于( )A(1,0)B(1,1)C(0,1)D(1,3)9 已知函数满足,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A B C D10若函数在上是单调函数,则的取值范围是( ) A B C D11已知集合A=1,0,1,2,集合B=0,2,4,则AB等于( )A1,0,1,2,4B1,0,2,4C0,2,4D0,1,2,412函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D9二、填空题13【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_.14已知变量x,y,满足,则z=log4(2x+y+4)的最大值为 15已知含有三个实数的集合既可表示成,又可表示成,则 .16函数在点处的切线的斜率是 .17如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形18刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下: 甲说:“我们四人都没考好” 乙说:“我们四人中有人考的好” 丙说:“乙和丁至少有一人没考好” 丁说:“我没考好”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了 三、解答题19已知椭圆E: +=1(ab0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程20已知定义域为R的函数是奇函数(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)021已知椭圆E: =1(ab0)的焦距为2,且该椭圆经过点()求椭圆E的方程;()经过点P(2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值22为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:()求任选2人中,恰有1人一周课外阅读时间在2,4)(单位:小时)的概率()专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围23如图,已知五面体ABCDE,其中ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC()证明:ADBC()若AB=4,BC=2,且二面角ABDC所成角的正切值是2,试求该几何体ABCDE的体积24从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄阳西县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D2 【答案】C【解析】解:,3x+2=0,解得x=故选:C【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题3 【答案】B【解析】解:由于函数y=ax (a0且a1)图象一定过点(0,1),故函数y=ax+2(a0且a1)图象一定过点(0,3),故选B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题4 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题5 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D6 【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com7 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边OB=2,直角三角形的直角边长是,直角三角形的面积是,原平面图形的面积是12=2故选D8 【答案】C【解析】解:集合M=x|x22x30=x|1x3,N=x|log2x0=x|0x1,MN=x|0x1=(0,1)故选:C【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用9 【答案】B【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数, 使得不等式恒成立, 即恒成立, , 设,则函数在上单调递增, 此时不等式,当且仅当,即时, 取等号,故选B. 考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成立(即可);数形结合;讨论最值或恒成立;讨论参数 .本题是利用方法求得的最大值的. 10【答案】A【解析】试题分析:根据可知,函数图象为开口向上的抛物线,对称轴为,所以若函数在区间上为单调函数,则应满足:或,所以或。故选A。考点:二次函数的图象及性质(单调性)。11【答案】A【解析】解:A=1,0,1,2,B=0,2,4,AB=1,0,1,20,2,4=1,0,1,2,4故选:A【点评】本题考查并集及其运算,是基础的会考题型12【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题二、填空题13【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。14【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,z=log4(2x+y+4)最大是,故答案为:【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题15【答案】-1【解析】试题分析:由于,所以只能,所以。考点:集合相等。16【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.17【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键18【答案】乙 ,丙【解析】【
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号