资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选高中模拟试卷雨花区高中2018-2019学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是( )A(0,1)B(1,2)C(2,3)D(3,4)2 函数f(x)=Asin(x+)(A0,0,)的部分图象如图所示,则函数y=f(x)对应的解析式为( )ABCD3 若命题“p或q”为真,“非p”为真,则( )Ap真q真Bp假q真Cp真q假Dp假q假4 设b,c表示两条直线,表示两个平面,则下列命题是真命题的是( )A若b,c,则bcB若c,则cC若b,bc,则cD若c,c,则5 已知直线:过椭圆的上顶点和左焦点,且被圆截得的弦长为,若,则椭圆离心率的取值范围是( )(A) ( B ) (C) (D) 6 圆心为(1,1)且过原点的圆的方程是( )A2=1B2=1C2=2D2=27 等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D728 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a29 已知正方体的不在同一表面的两个顶点A(1,2,1),B(3,2,3),则正方体的棱长等于( )A4B2CD210已知复合命题p(q)是真命题,则下列命题中也是真命题的是( )A(p)qBpqCpqD(p)(q)11在ABC中,C=60,AB=,AB边上的高为,则AC+BC等于( )AB5C3D12已知全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,则集合2,7,8是( )AMNBMNCIMINDIMIN二、填空题13设函数f(x)=,若a=1,则f(x)的最小值为;若f(x)恰有2个零点,则实数a的取值范围是14如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈依此类推,第8圈的长为 15设函数f(x)=若ff(a),则a的取值范围是16已知线性回归方程=9,则b=17已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为18已知角终边上一点为P(1,2),则值等于三、解答题19设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围20(本小题满分12分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.21 22(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.23一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =x24已知向量=(x, y),=(1,0),且(+)()=0(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,1),当|AM|=|AN|时,求实数m的取值范围雨花区高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:令f(x)=x3,f(x)=3x2ln=3x2+ln20,f(x)=x3在R上单调递增;又f(1)=1=0,f(0)=01=10,f(x)=x3的零点在(0,1),函数y=x3与y=()x的图象的交点为(x0,y0),x0所在的区间是(0,1)故答案为:A2 【答案】A【解析】解:由函数的图象可得A=1, =,解得=2,再把点(,1)代入函数的解析式可得 sin(2+)=1,结合,可得=,故有,故选:A3 【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,p假q真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题4 【答案】D【解析】解:对于A,设正方体的上底面为,下底面为,直线c是平面内一条直线因为,c,可得c,而正方体上底面为内的任意直线b不一定与直线c平行故b,c,不能推出bc得A项不正确;对于B,因为,设=b,若直线cb,则满足c,但此时直线c或c,推不出c,故B项不正确;对于C,当b,c且bc时,可推出c但是条件中缺少“c”这一条,故C项不正确;对于D,因为c,设经过c的平面交平面于b,则有cb结合c得b,由b可得,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题5 【答案】 B 【解析】依题意,设圆心到直线的距离为,则解得。又因为,所以解得。于是,所以解得故选B6 【答案】D【解析】解:由题意知圆半径r=,圆的方程为2=2故选:D【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题7 【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D8 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题9 【答案】A【解析】解:正方体中不在同一表面上两顶点A(1,2,1),B(3,2,3),AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4正方体的棱长为4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题10【答案】B【解析】解:命题p(q)是真命题,则p为真命题,q也为真命题,可推出p为假命题,q为假命题,故为真命题的是pq,故选:B【点评】本题考查复合命题的真假判断,注意pq全假时假,pq全真时真11【答案】D【解析】解:由题意可知三角形的面积为S=ACBCsin60,ACBC=由余弦定理AB2=AC2+BC22ACBCcos60=(AC+BC)23ACBC,(AC+BC)23ACBC=3,(AC+BC)2=11AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题12【答案】D【解析】解:全集I=1,2,3,4,5,6,7,8,集合M=3,4,5,集合N=1,3,6,MN=1,2,3,6,7,8,MN=3;IMIN=1,2,4,5,6,7,8;IMIN=2,7,8,故选:D二、填空题13【答案】a1或a2 【解析】解:当a=1时,f(x)=,当x1时,f(x)=2x1为增函数,f(x)1,当x1时,f(x)=4(x1)(x2)=4(x23x+2)=4(x)21,当1x时,函数单调递减,当x时,函数单调递增,故当x=时,f(x)min=f()=1,设h(x)=2xa,g(x)=4(xa)(x2a)若在x1时,h(x)=与x轴有一个交点,所以a0,并且当x=1时,h(1)=2a0,所以0a2,而函数g(x)=4(xa)(x2a)有一个交点,所以2a1,且a1,所以a1,若函数h(x)=2xa在x1时,与x轴没有交点,则函数g(x)=4(xa)(x2a)有两个交点,当a0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2a0时,即a2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是a1,或a214【答案】63 【解析】解:第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第n圈长为:n+(2n1)+2n+2n+n=8n1故n=8时,第8圈的长为63,故答案为:63【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号