资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
(新课标)高考数学一轮复习 名校尖子生培优大专题 高频考点分析之函数探讨函数的综合问题2 新人教A版例11.设 (I)求在上的最小值; (II)设曲线在点的切线方程为;求的值。【答案】解:(I)设,则。 当时,。在上是增函数。 当时,的最小值为。 当时, 当且仅当时,的最小值为。(II),。 由题意得:,即,解得。【考点】复合函数的应用,导数的应用,函数的增减性,基本不等式的应用。【解析】(I)根据导数的的性质分和求解。 (II)根据切线的几何意义列方程组求解。例12.设定义在(0,+)上的函数()求的最小值;(II)若曲线在点处的切线方程为,求的值。【答案】解:(I), 当且仅当时,的最小值为。(II)曲线在点处的切线方程为,。 。 又, 。 解得:。【考点】基本不等式的应用,导数的应用。【解析】(I)应用基本不等式即可求得的最小值。 (II)由和联立方程组,求解即可求得的值。例13.已知函数 = (k为常数,e=2.71828是自然对数的底数),曲线y= )在点(1,f(1))处的切线与x轴平行。()求k的值;()求的单调区间;()设g(x)=(x2+x) ,其中为f(x)的导函数,证明:对任意x0,。【答案】解:()由 = 可得,曲线y= f(x)在点(1,f(1))处的切线与x轴平行,即,解得。(),令可得,即。 令, 由指数函数和对数函数的单调性知,在时,从单调减小;从单调增加。和只相交于一点,即只有一解。 由()知,。当时,;当时,。(取点代入)在区间内为增函数;在内为减函数。(), 可以证明,对任意x0,有(通过函数的增减性和极值证明), 。 设。则。 令,解得。 当时,;当时,。 在取得最大值。 ,即。 对任意x0,。【考点】曲线的切线,两直线平行的性质,幂函数、指数函数和对数函数的性质和极值。【解析】()由曲线y= f(x)在点(1,f(1))处的切线与x轴平行,可令y= f(x)在点(1,f(1))处的导数值为0,即可求得k的值。 ()求出函数的导数,讨论它的正负,即可得的单调区间。 ()对,用缩小法构造函数,求出它的最大值即可得到证明。例14.设函数f(x)axn(1x)b(x0),n为整数,a,b为常数曲线yf(x)在(1,f(1)处的切线方程为xy1.()求a,b的值;(II)求函数f(x)的最大值;(III)证明:f(x).【答案】解:()f(1)b,由点(1,b)在xy1上,可得1b1,即b0。f(x)anxn1a(n1)xn,f(1)a。又切线xy1的斜率为1,a1,即a1。a1,b0。(II)由()知,f(x)xn(1x)xnxn1,f(x)(n1)xn1。令f(x)0,解得x,即f(x)在(0,)上有唯一零点x0。在上,f(x)0,f(x)单调递增;在上,f(x)0,f(x)单调递减,f(x)在(0,)上的最大值为fn。(III)证明:令(t)lnt1(t0),则(t)(t0)。在(0,1)上,(t)0,(t)单调递减;在(1,)上,(t)0,(t)单调递增,(t)在(0,)上的最小值为(1)0。 (t)0(t1),即lnt1(t1)。令t1,得ln,即lnn1lne。n1e,即。由(II)知,f(x),所证不等式成立。【考点】利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究曲线上某点切线方程。【解析】(I)由题意曲线yf(x)在(1,f(1)处的切线方程为xy1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值。(II)由于f(x)xn(1x)xnxn1,可求 f(x)(n1)xn1,利用导数研究函数的单调性,即可求出函数的最大值。(III)结合(II),欲证:f(x)由于函数f(x)的最大值fn,故此不等式证明问题可转化为证明 ,对此不等式两边求以e为底的对数发现,可构造函数(t)lnt1(t0),借助函数的最值辅助证明不等式。例15.已知函数,其中0.()若对一切R,1恒成立,求的取值集合.()在函数的图像上取定两点,记直线AB的斜率为,问:是否存在,使成立?若存在,求的取值范围;若不存在,请说明理由.【答案】解:()若,则对一切,这与题设矛盾,又,故。令。当时,单调递减;当时,单调递增.当时,取最小值。于是对一切恒成立,当且仅当令则。当时,单调递增;当时,单调递减,当时,取最大值。当且仅当即时,式成立。综上所述,的取值集合为。()存在。由题意知,。令则。令,则。当时,单调递减;当时,单调递增,当,即。,。又。函数在区间上的图像是连续不断的一条曲线,存在使单调递增,故这样的是唯一的,且,故当且仅当时, 。综上所述,存在使成立.且的取值范围为。【考点】利用导函数研究函数单调性、最值、不等式恒成立, 分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法的应用。【解析】()用导函数法求出取最小值,对一切R,1恒成立转化为,从而得出的取值集合。()在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断。例16.已知函数,其中0.()若对一切R,1恒成立,求的取值集合;()在函数的图像上取定两点,记直线AB的斜率为,证明:存在,使恒成立.【答案】解:()令,得。 当时单调递减;当时单调递增。当时,取最小值。对一切恒成立,当且仅当.令则。当时,单调递增;当时,单调递减。当时,取最大值。当且仅当时,式成立。综上所述,的取值集合为。()证明:由题意知,。令则。令,则。当时,单调递减;当时,单调递增。当,即。,。又。函数在区间上的图像是连续不断的一条曲线,存在使即成立。【考点】利用导函数研究函数单调性、最值、不等式恒成立,分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法的应用。【解析】()利用导函数法求出取最小值对一切R,1恒成立转化为从而得出求的取值集合。()在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析证明。例17.已知函数f(x)exax2ex,aR.()若曲线yf(x)在点(1,f(1)处的切线平行于x轴,求函数f(x)的单调区间;()试确定a的取值范围,使得曲线yf(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.【答案】解:()f(x)ex2axe,曲线yf(x)在点(1,f(1)处的切线平行于x轴,曲线yf(x)在点(1,f(1)处切线斜率k2a0。a0,即f(x)exex。此时f(x)exe,f(x)0得x1,当x(,1)时,有f(x)0,f(x)的单调递减区间为(,1),单调递增区间为(1,)。()设点P(x0,f(x0),曲线yf(x)在点P处的切线方程为yf(x0)(xx0)f(x0),令g(x)f(x)f(x0)(xx0)f(x0),故曲线yf(x)在点P处的切线与曲线只有一个公共点P等价于函数g(x)有唯一零点。因为g(x0)0,且g(x)f(x)f(x0)exex02a(xx0),所以,若a0,当xx0时,g(x)0,则xx0时,g(x)g(x0)0;当xx0时,g(x)0,则xx0时,g(x)g(x0)0。故g(x)只有唯一零点xx0。由于x0具有任意性,不符合P的唯一性,故a0不合题意。若a0,令h(x)exex02a(xx0),则h(x0)0,h(x)ex2a。令h(x)0,得xln(2a),记x*ln(2a)。则当x(,x*)时,h(x)0,从而h(x)在(,x*)内单调递减;当x(x*,)时,h(x)0,从而h(x)在(x*,)内单调递增。(i)若x0x*,由x(,x*)时,g(x)h(x)h(x*)0;x(x*,)时,g(x)h(x)h(x*)0.知g(x)在R上单调递增,所以函数g(x)在R上有且只有一个零点xx*。(ii)若x0x*,由于h(x)在(x*,)内单调递增,且h(x0)0,则当x(x*,x0)时有g(x)h(x)h(x0)0,g(x)g(x0)0;任取x1(x*,x0)有g(x1)0。又当x(,x1)时,易知g(x)exax2(ef(x0)xf(x0)x0f(x0)ex1ax2(ef(x0)xf(x0)x0f(x0)ax2bxc,其中b(ef(x0),cex1f(x0)x0f(x0)。由于a0,则必存在x2x1,使得axbx2c0.所以g(x2)0,故g(x)在(x2,x1)内存在零点即g(x)在R上至少有两个零点。(iii)若x0x*,仿(ii)并利用ex,可证函数g(x)在R上至少有两个零点。综上所述,当a0时,曲线yf(x)上存在唯一点P(ln(2a),f(ln(2a),曲线在该点处的切线与曲线只有一个公共点P。【考点】利用导数研究曲线上某点切线方程,利用导数研究函数的单调性。【解析】()求导函数,曲线yf(x)在点(1,f(1)处的切线平行于x轴,可求a的值,由f(x)0,可得函数f(x )的单调减区间;由f(x)0,可得单调增区间。()设点P(x0,f(x0),曲线yf(x)在点P处的切线方程为yf(x0)(xx0)f(x0),令g(x)f(x)f(x0)(xx0)f(x0),曲线在该点处的切线与曲线只有一个公共点P等价于g(x)有唯一零点,求出导函数,再进行分类讨论:若a0,g(x)只有唯一零点xx0,由P的任意性a0不合题意;(2)若a0,令h(x)exex02a(xx0),则h(x0)0,h(
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号