资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
平面与平面垂直的性质,复 习,1、直线和平面垂直的定义:如果直线和平面内的所有直线都垂直,则就说这条直线和这个平面垂直。 2、直线和平面垂直的判定定理:如果直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直。 3、直线和平面垂直的性质: (1)垂直于同一平面的两条直线互相平行。 (2)垂直于同一条直线的两个平面互相平行。 (3)如果直线和平面垂直,则这条直线和这个平面内的 所有直线都垂直。 4、唯一性定理: (1)过一点有且只有一条直线与已知平面垂直。 (2)过一点有且只有一个平面与已知直线垂直。,一、复习引入,1、平面与平面垂直的定义,2、平面与平面垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直。,符号表示:,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。,提出问题:,该命题正确吗?,二、探索研究,. 观察实验,观察两垂直平面中,一个平面内的直线与另一个平面的有哪些位置关系?,.概括结论,平面与平面垂直的性质定理,b,两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.,简述为:,面面垂直,线面垂直,该命题正确吗?,符号表示:,.知识应用,练习1:判断正误。,已知平面平面, l下列命题,(2)垂直于交线l的直线必垂直于平面 ( ),(3)过平面内任意一点作交线的垂线,则此垂线必垂直于平面( ),(1)平面内的任意一条直线必垂直于平面( ),例1:如图,在长方体ABCD-ABCD中,,(1)判断平面ACCA与平面ABCD的位置关系,(2)MN在平面ACCA内,MNAC于M,判断MN与AB的位置关系。,A,B,C,D,A,B,C,D,M,N,例2:如图,AB是O的直径,C是圆周上不同于A,B的任意一点,平面PAC平面ABC,,(2)判断平面PBC与平面PAC的位置关系。,(1)判断BC与平面PAC的位置关系,并证明。,(1)证明: AB是O的直径,C是圆周上不同于A,B的任意一点 ACB=90BCAC 又平面PAC平面ABC,平面PAC平面ABCAC, BC 平面ABC BC平面PAC,(2)又 BC 平面PBC ,平面PBC平面PAC,解题反思,2、本题充分地体现了面面垂直与 线面垂直之间的相互转化关系。,1、面面垂直的性质定理给我们提供了一种证明线面垂直的方法,面面垂直,线面垂直,性质定理,判定定理,练习2:如图,已知PA平面ABC, 平面PAB平面PBC,求证:BC平面PAB,E,证明:过点A作AEPB,垂足为E, 平面PAB平面PBC, 平面PAB平面PBC=PB, AE平面PBC BC 平面PBC AEBC,PA平面ABC,BC 平面ABC PABC,PAAE=A,BC平面PAB,练习3:如图,以正方形ABCD的对角线AC为折痕,使ADC和ABC折成相垂直的两个面,求BD与平面ABC所成的角。,A,B,C,D,D,A,B,C,O,O,折成,1、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。,2、证明线面垂直的两种方法: 线线垂直线面垂直;面面垂直线面垂直,3、线线、线面、面面之间的关系的转化是解决空间图形问题的重要思想方法。,三、小结反思,P78 A组 第7题 P79 B组 第1题,作 业,1、如图,=l,AB ,ABl, BC ,DE ,BCDE. 求证:ACDE.,A,B,C,D,E,四、作业布置,2.如图,平面AED 平面ABCD,AED是等边三角形,四边形ABCD是矩形,,(1)求证:EACD,M,(2)若AD1,AB ,求EC与平面ABCD所成的角。,谢谢各位的光临指导!,提出问题:,如果将 中的条件 与结论 的位置调换一下,构造这样的一个命题:,该命题正确吗?,b,平面与平面垂直的性质定理,两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.,符号表示:,简述为:,面面垂直,线面垂直,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号