资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
附件A、三极管的Pspice模型参数 .Model NPN(PNP、LPNP) model parameters模型参数含 义单 位默认值备 注AF flicker noise exponent 1.0噪声指数BFideal maximum forward beta 100.0最大正向放大倍数BRideal maximum reverse beta 1.0最大反向放大倍数CJCbase-collector zero-bias p-n capacitancefarad0.0集电结电容CJEbase-emitter zero-bias p-n capacitancefarad0.0发射结电容CJS (CCS) Substrate zero-bias p-n capacitance farad0.0零偏集电极-衬底电容EG bandgap voltage (barrier height) eV1.11FCforward-bias depletion capacitor coefficient 0.5GAMMA epitaxial region doping factor 1E-11IKF (IK) corner for forward-beta high-current roll-offampinfiniteIKR corner for reverse-beta high-current roll-offampinfiniteIRB current at which Rb falls halfway to ampinfiniteIS transport saturation currentamp1E-16饱和电流ISC (C4) base-collector leakage saturation currentamp0.0集电结漏电流ISE (C2)base-emitter leakage saturation currentamp0.0发射结漏电流ISS substrate p-n saturation current amp0.0ITFtransit time dependency on Ic amp0.0KF flicker noise coefficient 0.0噪声系数MJC (MC) base-collector p-n grading factor0.33MJE (ME) base-emitter p-n grading factor 0.33MJS (MS) substrate p-n grading factor0.0NCbase-collector leakage emission coefficient 2.0集电结漏电系数NE base-emitter leakage emission coefficient1.5发射结漏电系数NF forward current emission coefficient 1.0正向电流系数NKhigh-current roll-off coefficient 0.5NRreverse current emission coefficient1.0NSsubstrate p-n emission coefficient 1.0PTF excess phase 1/(2pTF)Hz degree0.0QCOepitaxial region charge factor coulomb0.0RBzero-bias (maximum) base resistanceohm0.0最大基极电阻RBMminimum base resistance ohmRB最小基极电阻RCcollector ohmic resistanceohm0.0RCO epitaxial region resistance ohm0.0RE emitter ohmic resistance ohm0.0TF ideal forward transit time sec0.0正向传递时间TRideal reverse transit timesec 0.0反向传递时间TRB1RB temperature coefficient (linear) 0C -10.0RB的温度系数TRB2 RB temperature coefficient (quadratic) 0C -20.0TRC1 RC temperature coefficient (linear) 0C -10.0TRC2RC temperature coefficient (quadratic)0C -20.0TRE1 RE temperature coefficient (linear) 0C -10.0TRE2 RE temperature coefficient (quadratic) 0C -20.0TRM1 RBM temperature coefficient (linear) 0C -10.0TRM2RBM temperature coefficient (quadratic) 0C -20.0T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCALrelative to AKO model temperature0C VAF (VA)forward Early voltage voltinfiniteVAR (VB) reverse Early voltage voltinfiniteVJC (PC) base-collector built-in potential volt0.75VJE (PE) base-emitter built-in potential volt0.75VJS (PS) substrate p-n built-in potential volt0.75VO carrier mobility knee voltage volt10.0VTFtransit time dependency on VbcvoltinfiniteXCJC fraction of CJC connected internally to Rb 1.0XCJC2fraction of CJC connected internally to Rb 1.0XTB forward and reverse beta temperature coefficient 0.0正向和反向放大倍数的温度影响系数XTFtransit time bias dependence coefficient 0.0传递时间系数XTI (PT) IS temperature effect exponent 3.0IS的温度影响系数附件B、 PSpice Goal Function特征函数功能说明Bandwidth (1, db_level)计算波形1从最大值下降db_level db的波形宽度。BPBW (1, db_level) Same as Bandwidth (1, db_level)CenterFreq (1, db_level) 计算波形1从最大值下降db_level db的两点的中心频率。Falltime (1)计算波形1的下降时间。Gain Margin (1,2)计算波形1的相位为-180。时,波形2的分贝值。 GenFall (1)类似于Falltime (1),但它的下降时间相对的y轴是起点于终点,而不是最大值与最小值。GenRise (1)与GenFall (1)类似,只是它是上升时间。HPBW (1, db_level)查找第一次比最大值低db_level db的x坐标。(上升沿)LPBW (1, db_level) 与HPBW类似,只是用于下降沿。Maxr (1, begin-x, end-x)查找区间的最大值。Overshoot (1)计算最大值与终点之间y轴坐标差与终点值的百分比。Peak (1, n_occur)查找第n-occur个峰值点的Y值Period (1)计算波形1的周期。Phase Margin (1,2)查找波形1在0分贝时波形2的相位。Pulsewidth (1)计算波形1的脉冲宽度。Risetime (1)计算波形1的上升时间。Swingr (1, begin-x, end-x) 计算在指定范围内,波形1的最大值与最小值之差。TPmW2 (1, Period)XatNthy (1, Y-value, n-occur)查找波形1上第n-occur个Y-value值时的X坐标值。XatNthYn(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在下降沿上。XatNthYp(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在上升沿上。XatNthYpct(1,Y_PCT,n_occur)查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。YatX(1,X_value)查找X-value值处的Y值。YatXpct(1,X_pct)查找X轴值为X轴范围的X_pct%时的Y轴值。附件C Modeling voltage-controlled and temperature-dependent resistorsAnalog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples.Voltage-controlled resistorIf a Resistance vs. Voltage curve is available, a loo
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号