资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第十三章 推理与证明、算法、复数 13.2 直接证明与间接证明教师用书 理 新人教版1直接证明(1)综合法定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法框图表示:(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论)思维过程:由因导果(2)分析法定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法框图表示:(其中Q表示要证明的结论)思维过程:执果索因2间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)综合法是直接证明,分析法是间接证明()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件()(3)用反证法证明结论“ab”时,应假设“ab”()(4)反证法是指将结论和条件同时否定,推出矛盾()(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程()(6)证明不等式最合适的方法是分析法()1若a,b,c为实数,且ab0,则下列命题正确的是()Aac2abb2C.答案B解析a2aba(ab),ab0,ab0,a2ab.又abb2b(ab)0,abb2,由得a2abb2.2(2016北京)袋中装有偶数个球,其中红球、黑球各占一半甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒重复上述过程,直到袋中所有球都被放入盒中,则()A乙盒中黑球不多于丙盒中黑球B乙盒中红球与丙盒中黑球一样多C乙盒中红球不多于丙盒中红球D乙盒中黑球与丙盒中红球一样多答案B解析取两个球往盒子中放有4种情况:红红,则乙盒中红球数加1;黑黑,则丙盒中黑球数加1;红黑(红球放入甲盒中),则乙盒中黑球数加1;黑红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样,所以和的情况一样多和的情况完全随机,和对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响和出现的次数是一样的,所以对B选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样综上选B.3要证a2b21a2b20,只要证明()A2ab1a2b20Ba2b210C.1a2b20D(a21)(b21)0答案D解析a2b21a2b20(a21)(b21)0.4如果abab,则a、b应满足的条件是_答案a0,b0且ab解析ab(ab)(ab)(ba)()(ab)()2()当a0,b0且ab时,()2()0.abab成立的条件是a0,b0且ab.5(2016青岛模拟)如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,xn,有f(),已知函数ysin x在区间(0,)上是凸函数,则在ABC中,sin Asin Bsin C的最大值为_答案解析f(x)sin x在区间(0,)上是凸函数,且A、B、C(0,)f()f(),即sin Asin Bsin C3sin ,sin Asin Bsin C的最大值为.题型一综合法的应用例1(2016重庆模拟)设a,b,c均为正数,且abc1.证明:(1)abbcac;(2)1.证明(1)由a2b22ab,b2c22bc,c2a22ac,得a2b2c2abbcca,由题设得(abc)21,即a2b2c22ab2bc2ca1.所以3(abbcca)1,即abbcca.(2)因为b2a,c2b,a2c,故(abc)2(abc),即abc.所以1.思维升华(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性(2)综合法的逻辑依据是三段论式的演绎推理对于定义域为0,1的函数f(x),如果同时满足:对任意的x0,1,总有f(x)0;f(1)1;若x10,x20,x1x21,都有f(x1x2)f(x1)f(x2)成立,则称函数f(x)为理想函数(1)若函数f(x)为理想函数,证明:f(0)0;(2)试判断函数f(x)2x(x0,1),f(x)x2(x0,1),f(x)(x0,1)是不是理想函数(1)证明取x1x20,则x1x201,f(00)f(0)f(0),f(0)0.又对任意的x0,1,总有f(x)0,f(0)0.于是f(0)0.(2)解对于f(x)2x,x0,1,f(1)2不满足新定义中的条件,f(x)2x(x0,1)不是理想函数对于f(x)x2,x0,1,显然f(x)0,且f(1)1.对任意的x1,x20,1,x1x21,f(x1x2)f(x1)f(x2)(x1x2)2xx2x1x20,即f(x1x2)f(x1)f(x2)f(x)x2(x0,1)是理想函数对于f(x),x0,1,显然满足条件.对任意的x1,x20,1,x1x21,有f2(x1x2)f(x1)f(x2)2(x1x2)(x12x2)20,即f2(x1x2)f(x1)f(x2)2.f(x1x2)f(x1)f(x2),不满足条件.f(x)(x0,1)不是理想函数综上,f(x)x2(x0,1)是理想函数,f(x)2x(x0,1)与f(x)(x0,1)不是理想函数题型二分析法的应用例2已知函数f(x)tan x,x,若x1,x2,且x1x2,求证:f(x1)f(x2)f.证明要证f(x1)f(x2)f,即证明(tan x1tan x2)tan ,只需证明tan ,只需证明.由于x1,x2,故x1x2(0,)所以cos x1cos x20,sin(x1x2)0,1cos(x1x2)0,故只需证明1cos(x1x2)2cos x1cos x2,即证1cos x1cos x2sin x1sin x22cos x1cos x2,即证cos(x1x2)f.引申探究若本例中f(x)变为f(x)3x2x,试证:对于任意的x1,x2R,均有f.证明要证明f,即证明2,因此只要证明(x1x2)(x1x2), 即证明,因此只要证明,由于x1,x2R时,0, 0,由基本不等式知显然成立,故原结论成立思维升华(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件正确把握转化方向是使问题顺利获解的关键(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证(2017重庆月考)设a0,b0,2cab,求证:(1)c2ab;(2)c a0,b0,2cab2,c,平方得c2ab.(2)要证c ac,只要证 ac,即证|ac|,即(ac)2c2ab.(ac)2c2aba(ab2c)0成立,原不等式成立题型三反证法的应用命题点1证明否定性命题例3等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN*),求证:数列bn中任意不同的三项都不可能成为等比数列(1)解由已知得d2,故an2n1,Snn(n)(2)证明由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,rN*,且互不相等)成等比数列,则bbpbr,即(q)2(p)(r)(q2pr)(2qpr)0.p,q,rN*,()2pr,即(pr)20.pr,与pr矛盾假设不成立,即数列bn中任意不同的三项都不可能成为等比数列命题点2证明存在性问题例4(2016济南模拟)若f(x)的定义域为a,b,值域为a,b(a2),使函数h(x)是区间a,b上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由解(1)由题设得g(x)(x1)21,其图象的对称轴为x1,区间1,b在对称轴的右边,所以函数在区间1,b上单调递增由“四维光军”函数的定义可知,g(1)1,g(b)b,即b2bb,解得b1或b3.因为b1,所以b3.(2)假设函数h(x)在区间a,b (a2)上是“四维光军”函数,因为h(x)在区间(2,)上单调递减,所以有即解得ab,这与已知矛盾故不存在命题点3证明唯一性命题例5已知M是由满足下述条件的函数构成的集合:对任意f(x)M,方程f(x)x0有实数根;函数f(x)的导数f(x)满足0f(x)1.(1)判断函数f(x)是不是集合M中的元素,并说明理由;(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意m,nD,都存在x0(m,n),使得等式f(n)f(m)(nm)f(x0)成立试用这一性质证明:方程f(x)x0有且只有一个实数根(1)解当x0时,f(0)0,所以方程f(x)x0有实数根0;f(x)cos x,所以f(x),满足条件0f(x)1.由可得,函数f(x)是集合M中的元素(2)证明假设方程f(x)x0存在
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号