资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
教学时间课题26.1二次函数(4)课型新授课教学目标知识和能力1使学生能利用描点法画出二次函数ya(xh)2的图象。过程和方法让学生经历二次函数ya(xh)2性质探究的过程,理解函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。情感态度价值观教学重点会用描点法画出二次函数ya(xh)2的图象,理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系教学难点理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的相互关系教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图一、提出问题1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答: (1)两条抛物线的位置关系。 (2)分别说出它们的对称轴、开口方向和顶点坐标。 (3)说出它们所具有的公共性质。 2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题? (画出二次函数y2(x1)2和二次函数y2x2的图象,并加以观察) 问题2:你能在同一直角坐标系中,画出二次函数y2x2与y2(x1)2的图象吗? 教学要点 1让学生完成列表。 2让学生在直角坐标系中画出图来: 3教师巡视、指导。问题3:现在你能回答前面提出的问题吗?开口方向对称轴顶点坐标y2x2y2(x1)2教学要点1教师引导学生观察画出的两个函数图象根据所画出的图象,完成以下填空: 2让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y2(x1)2与y2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y2(x一1)2的图象可以看作是函数y2x2的图象向右平移1个单位得到的,它的对称轴是直线x1,顶点坐标是(1,0)。 问题4:你可以由函数y2x2的性质,得到函数y2(x1)2的性质吗? 教学要点1.教师引导学生回顾二次函数y2x2的性质,并观察二次函数y2(x1)2的图象;2让学生完成以下填空: 当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大;当x_时,函数取得最_值y_。三、做一做问题5:你能在同一直角坐标系中画出函数y2(x1)2与函数y2x2的图象,并比较它们的联系和区别吗? 教学要点 1在学生画函数图象的同时,教师巡视、指导; 2请两位同学上台板演,教师讲评; 3让学生发表不同的意见,归结为:函数y2(x1)2与函数y2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y2(x1)2的图象可以看作是将函数y2x2的图象向左平移1个单位得到的。它的对称轴是直线x1,顶点坐标是(1,0)。 问题6;你能由函数y2x2的性质,得到函数y2(x1)2的性质吗? 教学要点 让学生讨论、交流,举手发言,达成共识:当x1时,函数值y随x的增大而减小;当x1时,函数值y随x的增大而增大;当x一1时,函数取得最小值,最小值y0。 问题7:函数y(x2)2图象与函数yx2的图象有何关系? 问题8:你能说出函数y(x2)2图象的开口方向、对称轴和顶点坐标吗? 问题9:你能得到函数y(x2)2的性质吗? 教学要点让学生讨论、交流,发表意见,归结为:当x2时,函数值y随x的增大而增大;当x2时,函数值y随工的增大而减小;当x2时,函数取得最大值,最大值y0。四、课堂练习:P8练习。五、小结:1在同一直角坐标系中,函数ya(xh)2的图象与函数yax2的图象有什么联系和区别?2你能说出函数ya(xh)2图象的性质吗?3谈谈本节课的收获和体会。作业设计必做教科书P14:5(2)选做练习册P115-116教学反思
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号