资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
5.6.3正弦定理、余弦定理和解斜三角形,正弦定理 Law of Sines,三角形中,,各边与它对角的正弦的比相等,复习,三角形面积公式,三角形面积等于两边与夹角正弦的乘积的一半,余弦定理,三角形任一边的平方等于其他两边的平方和减去,这两边与它们夹角的余弦的积的两倍,另一种形式:,小结: 1、正弦定理适用于: (1)两角一边 (2)两边一对角(可能出现两解,要检验) 2、余弦定理适用于: (1)两边一角(两边一对角、两边一夹角) (2)三边,优先使用余弦定理,扩充的正弦定理,一边与它对角的正弦的比值等于外接圆的直径长,证:,(同弧所对圆周角相等),(半圆弧所对圆周角为直角),证毕,常见的变形有:,例1.已知三角形边长为5,12,13,求外接圆半径R.,正弦定理、余弦定理的应用:,1.解三角形 2.判断三角形的形状 3.有关三角形的证明,例2.在 中, ,判断,的形状.,解:根据正弦定理得,代入条件并化简得,即,或者,得 或,所以 为等腰三角形或直角三角形.,解毕,例2.在 中, ,判断,的形状.,解法二:根据余弦定理得,代入条件并化简得,所以 为等腰三角形或直角三角形.,解得 或,解毕,课堂练习,1.三角形满足 ,判定其形状.,2.在 中,求证:,课堂练习答案,1.三角形满足 ,判定其形状.,解:,得,该三角形为等腰三角形. 解毕,课堂练习答案,4.在 中,求证:,证:左边=,=右边,证毕,作业,作业本1: 课本P80:EX15 练习册P26:EX69 P28:EX1,2,3,5,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号